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Braces which are used to prevent members from buckling are studied in
this research. While bracing requirements for elastic members are well explained,
those for inelastic members are not fully understood. This study is centered on the
brace stiffness requirements of inelastic members. The study is divided into two
parts. In Part I, melastic column buckling tests were performed. In Part I, an
inelastic buckling analysis program was developed.

In Part I, nine buckling tests of small scale inelastic columms were
performed to determine bracing requirements for inelastic members. The columns
had the elastic brace at the mid height. The tangent modulus of columns which
governs the inelastic buckling loads was kept constant. Braced columns are
modeled and analyzed by the finite element program, ABAQUS. It was found
through experimental and analytical studies that the bracing requirements for
inelastic columns depend on the buckling load and the braced length but not on the
material state.

In Part II, the inelastic buckling analysis program, IBASP (Inelastic
Buckling Analysis of Stiffened Plates), was developed to be used as the research

tool in finding brace stiffness requirements for inelastic members. Singly and



doubly symmetric members can be analyzed. It can determine buckling loads and
buckled shapes of elastic and inelastic members which failed by flexural, lateral-
torsional and/or local buckling. Multilinear isotropic hardening rule was used to
simulate the stress-strain relationship from material tests. IBASP was tested
against theoretical solutions and experimental results. The results from IBASP

show good agreement with those from experiments and theory.
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CHAPTER 1:
Introduction

1.1 General

As the understanding and knowledge of structural members' behavior and
material properties expand, more structural members are loaded to the inelastic
range of the material to take full advantage of material strength. The main failure
modes of inelastically loaded steel members are either yielding or buckling. Lateral
torsional and local buckling can occur for the I-shaped steel members

The use of braces along the member length can substantially increase the
lateral buckling capacity of a member. The brace stiffness and strength
requirements to achieve specified increases in the buckling strength of the braced
member have generally been developed for elastic structures. The requirements
for elastic members can be easily determined by analytical methods or existing
finite element programs.

The stability of inelastic members with braces is much more complex than
for braced elastic members. As the brace stiffness is changed, the buckling
strength of the member as well as the state of the material is altered. A very
limited number of studies has been carried out to find the bracing requirements of
melastic members. Presently there are even conflicting requirements for inelastic
members: one by Winter (1958) and another one by Pincus (1964) which will be
discussed in detail later. The present study centers on brace requirements for

inelastic members.



1.2 Objective

The purpose of this study is to determine the bracing requirements for
melastic steel members. The study is composed of two parts. In Part I,
experimental studies are performed. In Part II, analytical studies are carried out.

In Part I, small scale column specimens were tested to resolve two
conflicting bracing requirements for inelastic members. One suggested by Winter
~ (1958) depends only on the buckling load while the other one by Pincus (1964)
depends on the state of inelasticity. During the tests, the tangent modulus of
columns was controlled.

In Part II, an inelastic buckling program which is computationally efficient
was developed to find the buckling loads of unbraced and braced inelastic and
elastic members. Until now, elastic buckling problem solvers, like BASP (Akay,
Johnson, and Will, 1977), and inelastic buckling solvers with limited applications
have been used. Commercially available finite element programs, like ABAQUS
(1995) and ANSYS (1992), can solve elastic eigenvalue problems but fail to find
inelastic instability loads. Flexural, lateral-torsional and local buckling capacities
of inelastic members can be determined using the newly developed program,
IBASP (Inelastic Buckling Analysis of Stiffened Plates). However, the members
are limited to singly and doubly symmetric sections loaded in the plane of the web.

1.3 Scope

In the first part of the study, small columns with an ideal pin-pin support

condition were tested in the inelastic range. An elastic brace which kept its

elasticity throughout tests was located at the mid height of test columns. The main



variable was the stiffness of the brace. An experimental buckling load vs. brace
stiffnesses relationship was developed for comparison with theory.

The capabilities of the program developed in the second part of the study
are limited to calculation of elastic and inelastic out-of-plane buckling loads and
buckled shapes. Distortional buckling capacities can also be calculated. However,
the program can not determine post-buckling strength and the lateral displacement
at the instant of and after the lateral instability. The program can be used to
determine the brace stiffness requirements for elastic and inelastic members.
However, the strength requirements of brace are not determined by the program.
Braced members are modeled using lateral, rotational, and torsional braces. All
braces are assumed to be elastic.

Before presenting the details of the experimental and theoretical studies
which are found in Chapter 3 through 6, the general literature on bracing and

background information are discussed in Chapter 2.



CHAPTER 2:

Literature Review and Background Information

2.1 Introduction

Braces are used to increase buckling strength of structural members. They
need to have adequate strength and stiffness to prevent members from lower mode
buckling. Brace requirements of elastic members are relatively well understood
while those of inelastic members are not.

Previous work on buckling strength of braced and unbraced members is
discussed in this chapter. Brace requirements are also discussed. First, inelastic
buckling theories are reviewed. Then lateral torsional buckling strength of elastic
and inelastic beams is studied. It is followed by a discussion of brace stiffness and

strength requirements.
2.2 Inelastic Buckling Theory

The brief description of two inelastic buckling theories is given here. One
is a tangent modulus buckling theory and the other one is a reduced modulus
buckling theory. The difference between the two theories is whether elastic
unloading is considered or not. The state of material at the incipient of inelastic
buckling is specified as 4 in Figure 2.1. E and E, designate the elastic and
tangent modulus respectively

The tangent modulus theory predicts the buckling load by assuming that no
elastic unloading has happened when the column starts to buckle. The column will
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Figure 2.1 Stress and Strain Relationship

have the same tangent modulus £, on both sides of Point A. Ifiit is assumed that
the left side of Point A follows the elastic modulus(Z) and the right side of it
follows the tangent modulus( £, ) as the column starts to bend, it will yield the

reduced modulus buckling load. The reduced modulus for a rectangular cross-

section is given by Johnston (1963) as

E =ﬂ
* WE+\[E)

2.1)

where E, is the reduced modulus. According to Equation 2.1, the reduced

modulus is higher than the tangent modulus but lower than the elastic modulus.
As a result, the reduced modulus theory yields buckling loads higher than the
tangent modulus theory.

While the reduced modulus buckling theory appears more reasonable than
the tangent modulus theory because it includes the elastic unloading effect,

experimental buckling loads are closer to the tangent modulus buckling loads



(Johnston,1983). The difference, called ‘column paradox’, was not explained until
Shanley (1946) proved through carefully controlled experiments and analysis that
the tangent modulus load is the lower bound of the buckling load. The reduced
modulus buckling load is defined as the upper bound of the buckling load. von
Karman (Johnston, 1983) redefined the tangent modulus load as follows;

“The tangent modulus load is the smallest value of the axial load at which bifurcation of
the equilibrium positions can occur regardless of whether or not the transition to the

bent position requires an increase of the axial load.”

Figure 2.2 demonstrates the behavior of the perfectly straight column
without any initial imperfection. The column remains straight until the applied
load reaches the tangent modulus load P,. After reaching the tangent modulus

load, the column starts to bend as the load is increased. As bending increases, a

peak load, P,,,, is reached. P, is only a few percent higher than the tangent
P
PR
P max
E & L
-
Lateral Displacement at 1/2 p

Figure 2.2  Load and Displacement of an Inelastic Column



modulus load.
The tangent modulus load generally accepted as the buckling capacity of
the column is used in design practice. In this study, the tangent modulus is used to

calculate member capacity.

2.3 Lateral Torsional Buckling

2.3.1 Elastic Lateral Torsional Buckling

The perfectly straight beam which is subjected to bending moments about
the strong axis will deflect in the plane of applied moments until moments reach a
certain critical value. When the buckling moment is reached, lateral torsional
buckling is initiated by lateral deflection and twisting of the beam. Elastic lateral-
torsional buckling strength of beams was solved mathematically by Timoshenko
and Gere (1961) using differential equations. For a simply supported beam under

constant moment, the lateral-torsional buckling moment M, is given by

Timoshenko and Gere as:

T T 2
M, =~y BL(GJ+EC, —) (2.2)

where, /is the length of the beam,

I, is the moment of inertia about a weak axis,

G is the elastic shear modulus,

J is the polar moment of inertia, and



C,, is the warping constant.

Tn Equation 2.2, GJ and EC,, are the torsional rigidity and warping rigidity of the
beam respectively. The above equation is modified for beams under non-constant
moments because buckling moments depend on moment gradients.

During 1950’s and 1960’s, differential equations were used to find lateral
buckling loads of various beams. Buckling loads for single-span beams with
different boundary and loading conditions were summarized by Clark and Hill
(1960). Multi-span beam buckling problems were not given much attention until
Hartmann (1967) found the buckling loads of two- and three-span continuous
beams.

From early 1970’s, the finite element method has been used to solve a
wider range of buckling problems. Advantage of this approach is that it does not
involve complex differential equations and it can treat a larger variety of loading
cases and boundary conditions. Barsoum and Gallagher (1970) solved torsional
and torsional-flexural instability of prismatic members using the finite element
analysis. Powel and Klingner (1970) used the method to solve general beam
buckling problems. Akay, Johnson, and Will (1977) further developed the finite
element approach by considering cross-section distortion and local buckling. Their
program, BASP (Buckling Analysis of Stiffened Plates), can deal with distortional
buckling as well as flexural and lateral-torsional buckling but is limited to elastic
buckling problems. BASP will be discussed in further detail in Chapter 3.

The finite element analysis was continuously employed in analytical studies
by Trahair (1969), Nethercot and Trahair (1977), Hancock et al (1980), Bradford
and Trahair (1981), Bradford (1985), Chin et al (1990). Theoretical solutions and

the finite element analysis results for elastic lateral buckling problems were



reviewed by Nethercot (1983). Bradford (1992) summarized research efforts and

solutions for distortional and lateral-torsional buckling of beams.

2.3.2 Inelastic Lateral Torsional Buckling

Buckling loads and moments for inelastic beams are calculated using the
tangent modulus theory. It is assumed that, once beam fibers are yielded, the
stiffness of fibers depends on the tangent modulus while no elastic unloading is
considered.

Timoshenko and Gere (1961) assumed that the lateral flexural rigidity and
the torsional rigidity of an inelastic beam diminish in the same proportion. The
assumption leads to the inelastic shear modulus G as:

=T _ T
= (2.3)

Then, the inelastic critical buckling moment for a simply-supported beam under a

constant moment is expressed as follows;

7[2

T
Mcr =7#T]y(GTJ+ETCWV ?—) (24)

Equation 2.4 is basically the same as the elastic one, Equation 2.1, except for
changes in modulus. When a moment is changing along the span under a

concentrated load or a distributed load, Timoshenko and Gere (1961) recommend
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that the inelastic modulus corresponding to maximum bending moment be applied
over the whole span. This results in conservative estimates of the buckling load
because the rigidity of less stressed sections is underestimated.

Galambos (1963) proposed a different solution for the inelastic lateral
torsional buckling of simply supported beams under constant moments. He
inchuded the influence of residual stress upon inelastic buckling strength. It was
assumed that resistance to buckling is furnished only by an elastic core of a cross-
section. One thing different from Timoshenko’s approach is an inelastic shear
modulus. Using Neal (1950)’s experimental data which showed that the initial
torsional stiffness is independent of the level of inelasticity, Galambos used the
elastic shear modulus as the inelastic shear modulus (G=G,). The inelastic shear
modulus will be discussed in further detail in Chapter 5.

The finite element analysis was applied to inelastic buckling problems by
Nethercot and Trahair (1976), El-Ghazaly et al (1984a, 1984b, and 1986), and
Kitipornchai and Wong-Chong (1987). Analytical methods including the finite
clement method and solutions for inelastic lateral buckling problems were

summarized by Trahair (1983).

2.4 Bracing Stiffness Requirements

A brace needs to satisfy stiffness and strength requirements (Winter, 1963).
In this section, brace stiffness requirements are examined. When the stiffness of
the brace is zero or small, the axially loaded member buckles in a symmetric shape
as in Figure 2.3(b). As the stiffness of the brace is increased, the buckling load is
increased. The stiff brace like the roller support in Figure 2.3(a) would force the
axially loaded member to buckle m an anti-symmetric S-shape. The elastic
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(a) '

L L L

< > >
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22
@
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AL,
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Figure 2.3  Deflected Shape of a Fully Braced and an Unbraced
Column Under Axial Load

~ buckling strength of the fully braced member is four times higher than that of the
unbraced one. However, the increase of brace stiffness after a certain critical
stiffness, called full brace, would not increase the buckling strength of the axially
loaded member. The full brace requirements are defined as the minimum required
stiffness and strength which is comparable to an infinitely stiff support. Columns
with multiple braces behave similar to columns with a single brace. When the
column is braced by two stiff lateral braces at equal distance, the column buckles
with two inflection points. The buckling load of the braced column is nine times
larger than that of the column without braces.

Timoshenko and Gere (1961) using differential equations found brace
stiffness requirements of axially loaded columns with lateral braces. The

relationship between buckling load P, and brace stiffness 5 for the column with a

(4

brace is given as:
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_7°El 3

P +§ﬂL=ﬂ+%ﬂL (2.5)

where P is the buckling load of the braced column,
P, is the buckling load of the unbraced column,

L is the braced length of the column,
[ is the brace stiffness.

The relationship is plotted in Figure 2.4. Tt shows almost linear relationship
between the brace stiffness and the buckling load up to full brace. The full brace
stiffness is calculated as

4
Full Brace
3 4
o T
=
5 21
(=1
1 i e
0 t f t T t f t t f
0 4 8 12 16 20

BL/Pe

Figure 2.4 Buckling Load .vs. Brace Stiffness from Timoshenko and
Gere (1961)
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p (2.6)

Winter (1958) gave a simple method to find the stiffness and strength
requirements of a full brace. He introduced fictitious hinges with zero moment at
brace points and assumed initial imperfection modes as in Figure 2.5. Then,
moment equilibrium is taken at those hinges to find the most unfavorable mode
which yields the highest brace stiffness. The brace stiffness from the most
unfavorable mode constitutes the full bracing requirements of the column. For the

column with a single brace, the required stiffhess is;

2P, A
oo =] 1+—2 2.7
:B req L |: A :| ( )
where, £, is the required brace stiffness for a full brace,

A, is the initial imperfection amplitude,

A is the lateral displacement of the column at the brace.

For the ideal column without the initial imperfection(4,=0), the required

full bracing stiffness is

Bia=—* (2.8)
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Yy f T——» BA/2 .
Pe Pe

Figure 2.5 Winter’s Fictitious Hinge Model for the Column with a Brace

which is the same brace stiffness suggested by Timoshenko, Equation 2.6, for full
brace. Using Equation 2.8, the required brace stiffness for an initially imperfect

column can be expressed as:
4,
req — Mid __"] :
Jij Bial 1+ (2.9)

Pincus(1964) suggested the method which is similar to Winter’s to
determine inelastic column brace requirements. Rather than the fictitious hinge,
Pincus introduced the rotational spring of stiffness o which represents the flexural

stiffness of the column. The rotational spring is placed at the bracing point as



15

shown in Figure 2.6. When moment equilibrium is taken from the free body
diagram of Figure 2.6,

A pA. L
M=4a(—=)=PA-(—)(— 2.10
)=Pa-CD3) (2.10)
The buckling capacity of the column with a brace is given from Equation 2.10 as:

P =—+ (2.11)

where a is the rotational spring constant, a=z"EI/L* .

He reasoned that if the flexural stiffness « starts to decrease because E is

reduced to E.., then P would also be reduced. Ifthe certain specified value of P in

M = 4o(A/L)
| éf <—pA2
P

Figure 2.6 Pincus’ Model for the Inelastic Column with a Brace
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the inelastic range is desired, # has to be increased to compensate the decrease of

c. It means that stiffer braces are required to brace inelastic members compared to
elastic ones. Trahair and Nethercot (1984) adopted Pincus' approach for inelastic
structures and recommended the use of stiffer braces for inelastic structures.
However, Ales and Yura (1993) pointed out that the method proposed by Pincus
fails to give the full brace requirements of elastic columns. The full bracing
requirement of a simply supported elastic column by Winter (1963) and
Timoshenko and Gere (1961) is given by Equation 2.8 as f,,=2F, /L.

Equation 2.11 by Pincus (1964) yields

3P
2.12
Y (2.12)

IB req =

The comparison of two requirements indicates that Pincus recommendation does
not provide full brace stiffness. In Part I of this study, braced inelastic column
tests are carried out to examine Pincus suggestions. Winter's method for elastic
structures are extended to inelastic structures and are experimentally reviewed.

Because of the lateral torsional buckling behavior of beams, bracing
requirements of beams are more complex than those of columns. Four different
types of braces, lateral, rotational, warping, and torsional, can be used individua]ly
or in combination to prevent lateral torsional buckling. The location of the braces
within the cross-section influences the effectiveness of each.

Winter also proposed lateral bracing requirements of beams. He
considered the compressed portion of a flange as an independent strut. The strut
acts like a column and the same method that is used for braced columns is applied

to find lateral brace requirements. Lay and Galambos (1966) proposed bracing
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requirements of inelastic steel beams. They related the brace stiffiess and spacing

and concluded that relatively stiff braces are needed for closely braced members.
Hartmann (1971) studied flexural-torsional buckling of partially yielded
rectangular beams using differential equations. He investigated effects of bracing
types and locations on buckling but did not provide specific stiffness requirements.
Muton and Trahair (1973) suggested a closed form solution for elastic beams with
lateral and rotational restraints. The elastic buckling program, BASP, by Akay,
Johnson, and Will (1977) can be used to find brace stiffness requirements of elastic
structures. Wakabayashi and Nakamura (1983) performed buckling tests of beams
laterally braced by purlins. They reported that bracing effects of purlins on beam
buckling strength is significant. Wong-Chung and Kitipornchai (1987) tested
partially braced beams and studied influence of partial brace. It was concluded
that a tension flange lateral brace has little effect on buckling capacity while lateral
braces at shear center and compression flange are fully effective. Ales and Yura
(1993) tested two inelastic braced beams to compare bracing requirements by
Winter (1963) and Pincus (1964). The stiffness of the brace was slightly higher
than the brace stiffness requirements by Winter. The beam buckled in S-shapes
after reaching the tangent modulus lateral-torsional moment. It demonstrated that
Winter’s theory can be applied to inelastic members. In Part 2 of the study, the
nelastic buckling program, IBASP, which is base& on the tangent modulus
buckling theory, is developed to find lateral-torsional buckling capacities of braced

and unbraced members.
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2.5 Brace Strength Requirements

As discussed earlier, a brace needs to satisfy both stiffness and strength
requirements to act as full brace. Though brace stiffhess requirements are the
focus of the study, strength requirements warrant the same attention. The strength
requirement is measured in terms of the force exerted on the brace by the
members.

According to Winter (1963), the strength requirements can be calculated
using the permissible displacement and the required stiffness of the brace. The

strength requirement of the brace is expressed as:

F;Jl'zﬂrqup =/8id (A0+Ap) (213)
where F,, isthe brace force,

4, is the permissible displacement.

When the actual stiffness of the brace f,, is higher than the full brace stiffness

B .., the permissible displacement is

Bia
A=A ——F— 2.14
P oﬂact—ﬂid ( )

and the required strength of the brace is

ﬁid
F.=0,.,4,=4 2.15
or aerp ° 1_(ﬂid /:Bact) ( )
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Equation 2.15 indicates that actual stiffness of the brace should be higher than the
ideal stiffness to avoid a large brace force. The relationship between buckling
loads and brace strength for different brace stiffnesses is plotted in Figure 2.7. The
initial imperfection at the middle height of the column is assumed as 0.002L. It
shows that the stiffer brace would reduce the brace strength requirement. As an
example, when the actual brace is two times stiffer than the full brace stiffness, the
brace force is just 0.8% of the buckling load. According to Lay and Galambos
(1966), 2% of the buckling load has been commonly used as the brace strength

requirements in design practice.

3Bia :
0.8 4 §\2ﬁid \
. ¢P

L ia
0.6 - : 4
& z LI
Ay .
0.4 4 E Ao /L :1/500
0.2 - :
:0.8%
: P
0 T % T 1 1 T 1
0 0.5 1 1.5 2 25 3
Fie / Pe (%)

Figure 2.7 Brace Stiffness and Brace Force Relationship from Winter’s

Model (1958)
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Helwig (1994) investigated the behavior of braced elastic columns using

the finite element program, ANSYS. The ANSYS results (Figure 2.8) show that
brace force is 1.05% of the buckling load when the brace stiffness is twice the ideal
full brace stiffness. The total displacement is expected to be 2324  (Figure 2.9).

Plaut (1993) also reported that the total displacement is 2.334,. According to
Equation 2.14 by Winter, the expected total displacement is 24 . The difference

between Winter’s prediction and ANSYS results stems from the assumption of a
fictitious hinge model. Winter’s model has zero moment hinges at the bracing
point while imperfect columns for ANSYS analysis have non-zero moment at the
brace.

Nakamura (1988) claimed that Winter’s model gives smaller bracing forces
for H-shaped beams. Even so, he proposed 2% of the compression resultant force
in the beam as a required lateral bracing force. Wang and Nethercot (1989 and
1990) performed analytical studies of braced W-shaped beams using finite element
method program. They concluded that 1% of the axial force in the beam
compression flange at failure would suffice as the lateral bracing force of the beam

when the brace is stiff enough.
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PART I: EXPERIMENTAL STUDY

CHAPTER 3:
Inelastic Column Buckling Tests

3.1 Introduction

There are two conflicting brace stiffness requirements for inelastic columns
as discussed in Chapter 2: one by Winter (1958) and the other one by Pincus
(1964). The full brace stiffness and strength requirements by Winter depend on the
column load and the length of braced members. Winter’s model which is
independent of material state can be applied to inelastic as well as elastic
structures. The requirements for inelastic members by Pincus depend on the state
of material. Pincus qualitatively recommends that inelastic members need to have
higher bracing stiffness than elastic structures. In this chapter, bracing
requirements for inelastic members are determined by experimental and analytical
studies.

Small scale inelastic column tests were carried out using a composite
column composed of high strength and low strength steel. The columns tested had
the elastic brace at the mid-height. Four different braces were used during tests.

A finite element method program, ABAQUS, was used in the analytical
study to verify experimental results. Because the program cannot carry out
inelastic buckling analysis, large displacement analysis was used to find the
strength of inelastic columns with the elastic brace. Brace strength requirements of

inelastic columns were also determined during the analytical study.
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3.2 Test Program
3.2.1 Test Specimen

There are a number of ways to perform inelastic buckling tests. One is
using a material like aluminum (Figure 3.1(a)) which has a nonlinear stress-strain
relationship in the inelastic range. Inelastic buckling tests like one by Shanley
(1946) have been carried out using aluminum alloy. Steel with residual stresses
can also be used. Figure 3.1(b) illustrates the results of stub column tests showing
that the stub column yields earlier than the tensile coupon due to residual stresses.
The last one is using a linear strain hardening material as illustrated in Figure
3.1(c). The linear strain hardening material can be made by combining two
materials with different yield strength but the same modulus. In general, aluminum
alloy or steel with residual stresses were used in inelastic buckling tests. However,
the buckling loads of the braced inelastic columns depend on both the tangent
modulus and the brace stiffness. The tangent modulus of those two materials are

constantly changed so that it is difficult to determine the correct tangent modulus

Coupon  Stub Column
2 E 2 ‘ B 2
& &
E E E
Strain Strain Strain
(a) Aluminum (b) Steel with Residual Stress (c) Linear Strain Hardening

Figure 3.1 Stress-Strain Relationships of Inelastic Materials
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at buckling and the brace requirements at the same time. If the linear strain
hardening material is used, the brace requirements of the inelastic columns become
the only variable that needs to be determined. In this study, the last approach with
the constant tangent modulus is employed to measure the effects of braces.

The cross-section of a composite column composed of high strength and
low strength steel bars is shown in Figure 3.2. A core material is high strength
steel and the outside material is low strength steel. The buckling will occur about
X-X axis in Figure 3.2. If the composite column buckles above the stress at which
lower strength steel bars yield, low strength steel bars would have no influence on
the buckling strength of the composite column because the tangent modulus of the
low strength steel bars are zero. The buckling load is solely governed by a high
strength core steel bar which still remains at the elastic state. Buckling loads of the
elastic core column and the inelastic composite column are equal and expressed as

follows:

.

x--

9la/la" l/ 1" |3/16” |
~ I [~

I:] High Strength Material
Low Strength Material

Figure 3.2  Cross-section of Test Columns
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P = 7 Eleorg - 7* Er Igross

L 7 7 (3.1)

where, /., is the moment of inertia of the elastic core steel bar;

I cposs 1S the moment of inertia of the composite column.

Equation 3.1 leads to the tangent modulus of the composite column which is equal
to the elastic modulus of the core steel bar times the ratio of moment of inertia’s.
Equation (3.2) and (3.3) are used to find the tangent modulus of the composite

column.

Er X Ioposs =E X Loopg (3.2)

E, = ([CORE / ]GROSS) x B (3.3)

High strength steel bars need to have high proportional limit as well as high
yield strength because the elastic modulus of steel is reduced after it passes the
proportional limit. Because high strength steels do not necessarily have high
proportional limit, a few high strength steel bars were tried before choosing one.
Bigger difference between the proportional limit of high strength steel and the yield
strength of lower strength steel was preferred for experiments. The proportional
limit of high strength steel was targeted at least 60 ksi while the yield strength of
low strength steel was expected to be less than 40 ksi.

For selected steel bars, static tensile coupon tests were performed
according to ASTM Standard E8-93a. After a series of materials tests, AISI 1018
(UNS G 10180) cold finished carbon steel bars which conformed to ASTM A-108
Specification were chosen as high strength steel with the specified yield strength of
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70 ksi. AISI 1008 (UNS G 10080) hot rolled carbon steel bars which conformed
to ASTM A569 Specification were selected as the lower strength steel. The bars
had a specified yield strength of 40.0 ksi. The nominal dimension of the AISI 1018
steel bar was 17x1/2” and that of the AISI 1008 bar was 3/167x1/2”. The
difference between the actual and nominal dimension of the bars was less than
1/100” so that the nominal dimension was used in analytical studies.

Three coupon tests were performed for each strength and the averaged
results are plotted in Figure 3.3. Lower strength steel bars had a static yield
strength of 38.8 ksi. After yielding was initiated, bars had a yield plateau with
almost zero modulus. Even though AISI 1018 steel bars yielded at a stress above
80 ksi, their proportional limit was less than 70 ksi. The difference between the
proportional limit of high strength bars and the yield strength of low strength bars

100 1 Proportional Limit High Strength Steel

Low Strength Steel

a4

Stress(ksi)

0 T 1 I 1 I 1 1
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007

Strain(in/in)

Figure 3.3  Material Characteristics from Tension Coupon Tests
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was about 28 ksi. The elastic modulus of both steel bars was equal to 29000 ksi.
The modulus of the composite column was reduced to the tangent modulus after
low strength steel bars yielded at 38.8 ksi as shown in Figure 3.4. The tangent
modulus of the composite column using Equation 3.3 was 21000 ksi.

The stress of the composite column at which the fully braced column
would buckle was targeted at about 50 ksi. Various lengths of the column were
examined to find that level of stress. It was determined that a 9.5” column length
was the appropriate braced half column length which resulted in the expected
buckling load of 33.0 kips and a corresponding stress of 48.0 ksi. For the braced
column tests, that length should be doubled so a 19” long column was targeted.
The length of the testing column included 1” of a cap height as shown in Figure
3.5. Caps which are made of hardened steel were placed at the top and the bottom

70 A
—o— Low Strength Steel

60 A

50l —=— High Strength Steel
é 40 4 —a— Composite Column o
Z
= 30 A

20 A

10 A

0 f t ; t i
0 0.0005 0.001 0.0015 0.002 0.0025
Strain(in/in)

Figure 3.4  Tangent Modulus of Composite Column
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of the column and were used for uniform distribution of a load. They also
prevented localized yielding under the concentrated line load from the testing
machine. It was assumed that the caps had minimal influence on the overall
behavior and buckling strength of the column because most of lateral deflection
occurred away from the ends.

The steel bars were made into composite columns using epoxy. The first
step to make composite columns was sand-blasting of contact surfaces of the steel
bars. Surfaces of cold drawn steel bars were so smooth that epoxy could not be
applied effectively. The sand blast cleaned and roughened the surfaces. Then, the
sand blasted surfaces were cleaned with acetone to remove dirt. Afier that, a
special type of epoxy, called JB Welds, was applied. JB Welds proved to be
strong enough to hold the composite column together during buckling.

19" v

Column

N N

Figure 3.5 Column and Cap
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3.2.2 Test Setup

Tests were performed using a Tinus-Olson Universal Testing Machine with
the capacity of 120 Kips. The Testing Machine which is shown in Figure 3.6 can
provide electrical output as well as analog output. The machime and its output
were first calibrated using a load cell. Linear potentiometers were used to measure
displacements at a middle and a quarter height of testing columns. The outputs
from the load cell and potentiometers were collected using a HP Plotter which can
convert analog input into digital data for later use. XY Plotter was also used to
observe the behavior of the columns during tests.

The load from the Testing Machine was transferred to the column by a knife edge
acting on a cap. Figure 3.7 illustrates the transfer of load between the knife edge
and the cap at the top of the column. The same load transfer fixture was installed
at the bottom of the column. End conditions simulate the ideal pin-pin support

i

Column

Figure 3.7  Knife Edge and Cap
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that results in the effective length factor of 1.0 in a column buckling equation. The
angle difference between the knife edge and the cap accommodated the rotation of
the column at each end as it buckled. Qil hardening process was used to harden
caps and edges after they were machined.

All brace elements shown were sitting on the top of the Testing Machine
floor. The main brace elements are composed of an Angle A and B and a bracing
beam as illustrated in Figure 3.8 and 3.9. The bracing beam was placed on the top
of the Angle B. Knife edges that were bolted to the Angle B acted as pin supports
to the bracing beam. Knife edges were placed on both sides of the beam to
restrain lateral displacements which can happen in either direction. The Angle Bs
were attached to the Angle A using bolts. The Angle A had rows of bolt holes as
shown in Figure 3.8. The simply supported length of the bracing beam can be
changed by anchoring the Angles Bs to the Angle A at different locations. The
length can be changed from 8” to 14”. The brace stiffiess changed as the
supported length of the bracing beam was altered. Reactions from the bracing
beam were carried by the Angle B and the Angle A to the Testing Machine column

and floor.
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Details of the bracing beam are illustrated in Figure 3.10 and Figure 3.11.
The bracing beam is the one of main brace elements as discussed previously. It
was placed on the top of the Angles B using bolts. The bracing beam was made of
the high strength steel bar with the yield strength of over 100.0 ksi. During brace
stiffness calibration and column buckling tests, the lateral deflection of the beam
was limited to keep the beam in the elastic range throughout tests. The cross-
sectional dimension of the beam was 1/2”x1/2” square. The length of the beam
was 16”.

The bracing beam had the arm on the side which contacted with the
column. The columns were placed between two rollers of the arm as shown in
Figure 3.11. Rollers acted as pin supports on each side of the columns. They
allowed lateral displacements and fiictionless rotations. Lateral displacements of
the column happened in an East-West direction in Figure 3. 11. In Figure 3.11, the
left roller was fixed in position while the right one could be moved depending on
the thickness of columns. The circular rod was able to be shifted by making the
diameter of holes in the rectangular steel bars larger than that of the circular rod.
The movable circular rod had threads and nuts at both ends. After pushing the
roller against the column, the movable roller was fixed by tightening the nuts
against rectangular steel bars.

The stiffness of the bracing beam was measured before column buckling
tests. A small hydraulic ram and linear potentiometers were used to measure the
stiffness of the bracing beam. The bracing beam tests were performed after
complete installation of all bracing elements. The torque of bolts was kept at the
same level using a torque wrench for the consistency of tests. Loads were applied
to both east and west direction because testing columns could move in either

direction during buckling tests.
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Figure 3.10 Bracing Beam with Connection Attachments
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Figure 3.11 Bracing Beam Details
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Table 3.1 Beam Length vs. Beam Stiffness

Beam Length (inch) | Beam Stiffness (kips/inch)
' 8.0 20.9
10.0 11.0
12.0 6.4
14.0 4.1

Afier a series of tests, a linear regression analysis was used to establish the
stiffness. The simply supported bracing beam length and stiffness are shown in the
Table 3.1. The stiffness given in Table 3.1 was valid for either direction. The ideal
full brace stiffness f, according to Winter is

_2x P, 2x33
L

Bia = 6.95(kips | inch) (3.4)

where P, is the tangent modulus buckling load. Comparison showed that two

bracing beams had stiffness higher than the ideal stiffness from Equation 3.4.

Static loading procedure was applied during tests. In the elastic region,
loads were applied slowly but continuously. In the inelastic region, the testing
machine was stopped for 3 minutes to allow unloading after each increment of 2.0
kips. During tensile coupon tests, the machine was also stopped for 3 minutes to
get static material characteristics. After 3 minutes, a load was read and recorded.
Then, the increment of 2.0 kips was applied again. The process was continued

until the column buckled.
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If the brace stiffness was higher than the ideal full brace stiffness, sudden

instability, buckling, was expected. The Testing Machine automatically reduced
load if buckling was initiated. No obvious buckling was anticipated if the stiffness
was less than the filll brace stiffness. When the stiffness was less than the full brace
stiffness, the machine was stopped after the certain amount (0.25 inch) of the
lateral displacement of the bracing beam. As discussed earlier, the magnitude of
the allowable displacement was determined to keep the bracing beam in the elastic
state. Excessive deflection would lead to plastic deformation and change the
stiffness of the bracing beam. Two or three buckling tests were carried out for
each brace stiffness. Along with those tests, the one-half column whose length
was 9.5” was also tested to compare with fully braced columns. Ideally, the
buckling load of a one-half length column and that of the fully braced column
should be identical.

3.2 3 Test Results

Test results are presented in Table 3.2. The last column of the Table 3.2
describes the buckling shape. The buckling load from the one-half length column
shown at the last row of the table is close to those from the columns with stiff
braces. A typical load versus displacement relationship for each stiffness is given
in Figure 3.12 through 3.15. Displacements in the figures were measured from the
one-quarter height of columns. When the brace stiffness was higher than the ideal
stiffness, rapid drop of load after buckling was oBserved as illustrated in Figure
3.12 and 3.13.



Table 3.2 Column Buckling Test Results

Test Name Brace Buckling Buckling Shape
Stiffness(kips/inch) Load(kips)
S8IN1 21.0 35.7 Anti-Symmetric
S8IN2 21.0 36.5 Local
S10IN1 11.0 34.0 Local
S10IN2 11.0 335 Local
S12IN1 6.4 27.7 Symmetric
S12IN2 6.4 30.4 Symmetric
S12IN3 6.4 30.8 Symmetric
S14IN1 4.1 23.7 Symmetric
S14IN2 4.1 23.7 Symmetric
One-Half Column 34.5 Symimetric

37
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When the brace stiffness was lower than the ideal stiffness, the load was gradually
reduced after reaching the maximum load as shown in Figure 3.14 and 3.15. The
maximum loads were taken as the buckling capacities of the columms. The
columns deflected in a first mode shape. _

Main purpose of experimental work was to find the relationship between
the inelastic column buckling loads and the brace stiffness. The relationship is
illustrated in Figure 3.16. Braced column buckling loads along with the buckling
load from the one-half column and the theoretical tangent modulus buckling load
are plotted in Figure 3.16. 3, is the ideal bracing stiffness which was calculated n
Equation 3.4. Most of buckling loads were above the yield loading of columns
(26.7 kips).

A few observations were made out of test results. The tangent modulus
theory proves to be the lower bound theory. All inelastic buckling loads from the
fully braced columms and the one-half column were higher than the tangent
modulus load. However, they were still lower than the reduced modulus buckling
load (38.2 kips). The buckling loads were increased as the brace stiffness was
raised. That happened even after the brace stiffness was above the ideal stiffness,
B, Theoretically, the increment of brace stiffiess should not affect the buckling
load once the ideal stiffness is reached. When the 8” bracing beam was used
(8., =3,), buckling loads were higher than the one-half column buckling load.
Buckled shapes of fully braced inelastic columns were not anti-symmetrical in three
out of four tests. Only a half of the column was buckled while the other half
remained almost straight. A typical buckled column is shown in Figure 3.17 where
buckling occurred at the bottom half of the column.
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One of possible causes of high buckling loads and localized buckling would be
brace fixtures. Rollers substituted theoretical pin supports which had to rotate
freely without vertical movement at the center of the column as the column
buckled in the antj-symmetrical 2nd mode shape. In reality, there must be some
amount of frictional forces and vertical movements. Non-uniform distribution of

material characteristics would also contribute to localized buckling.
3.3 Analytical Study
3.3.1 Backgrounds of Analytical Study

A finite element program package, ABAQUS, was used to analyze inelastic
columns. ABAQUS outputs were compared with experimental results. ABAQUS
(ABAQUS Manual, 1993) can solve the problem of nonlinear geometry and
material non-linearity. It can also perform linear elastic buckling analysis but
cannot do inelastic bifurcation or buckling analysis (ABAQUS Manual, 1993). In
this study, nonlinear large displacement analysis was employed to find the strength
of the braced inelastic columms. Maximum load from large displacement analysis
was taken as the strength of the columns.

The column was modeled using an eight-node layered shell element.
Linear spring elements were utilized to model the elastic braces. Tensile coupon
test results of the low and high strength steel bars were given as material
characteristics.

Large displacement analysis is known to be semsitive to the initial
imperfection of structures. Both the magnitude and shape of initial imperfection
affect the strength of inelastic columns. The magnitudes of initial imperfections of

the tested columns were measured using filler gauges before tests and used as
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Figure 3.19 Initial Imperfection Shapes for Analytical Study
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ABAQUS inputs. The measured initial imperfection ratio defined as the ratio of
the maximum initial imperfection magnitude over the unbraced column length was
close to 1/1000. Three types of imperfection shapes which are illustrated in Figure
3.19 were employed in analysis. In all three cases, the initial imperfection

magnitude A was given as follows:
A
- - 3.5
- (3.5)

in which L is the column length as shown in Figure 3.19. The first one (Figure
3.19 (a)) represents a symmetric first mode shape. The second one (Figure 3.19
(b)) is an anti-symmetric second mode shape. The last one (Figure 3.19 (c)) is the
non-symmetric second mode shape where the imperfection of one half is bigger

than that of the other half The ratio of A/A, was varied during analysis to match

the behavior of columns during experiments. It was observed during tests that
buckled shapes of full braced columns were close to the non-symmetric shape.
The columns were simply supported at each end and brace was located at the mid-

height of columns.
3.3.2 Analysis Results

The results from the analysis were shown in Figure 3.20 and Figure 3.21.
Tn Table 3.3, the experimental and analytical results were compared. Figure 3.20
and Table 3.3 showed that the maximum strength of braced columns with the
symmetric 1st mode shape imperfection kept increasing with the increment of the

brace stiffness. The strength of the column continued to increase even after it
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Table 3.3 Comparison of Experimental and Analytical Results

Brace Stiffuess | Experimental | ABAQUS Results ABAQUS Results
(kips/in) Results 1st Mode Shape 2nd Mode Shape
4.1 23.7 23.7 25.1
6.4 29.2 29.9 30.5
11.0 33.8 37.8 30.7
21.0 36.1 42.1 30.7

passed the tangent modulus buckling load. It occurred because ABAQUS does
not perform the inelastic bifurcation analysis and it also does not determine an
nelastic instability Joad. Figure 3.21 showed that the loads from the 2nd mode
shape imperfections (Figure 3.19 (b) & (c)) were smaller than the tangent modulus
buckling load. The column with the anti-symmetric 2nd mode shape imperfection
(Table 3.3 & Figure 3.19 (b)) yielded the constant load once the brace stiffness
reached a certain value. When the column with the initial imperfection shape of
Figure 3.19 (c) was used, very slight increase in the loads was observed with the
increment of the brace stiffness. The non-symmetric 2nd mode shape column gave
the higher buckling load than the anti-symmetric one under the same brace
stiffness.

The ideal full brace stiffness was determined using the ABAQUS results.
When the brace stiffness is lower than the ideal brace stiffness, the columns with
the anti-symmetric 2nd mode shape imperfection would yield higher maximum
load than the symmetric 1st mode shape columms. The opposite phenomenon
would occur if the brace is stiffer than the ideal brace. The buckling loads of the
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braced column is chosen as the lower of two loads. As shown in Figure 3.22, the

ideal stiffness f3,; from the analysis was determined as 6.8 kips/in which is close

to the one by Winter (Equation 3.4). Ifthe brace stiffness was lower than the ideal

stiffness 3,4, experimental and analytical buckling loads were very close as shown
in Figure 3.20 and Table 3.3. When the column was fully braced (5> f.7),

analytical buckling loads were lower than the tangent modulus load (Figure 3.21).

3.4 Brace Strength Requirements for Inelastic Columns

As discussed in Chapter 2, the finite element method program, ANSYS
(1992), was used by Helwig (1994) to find the brace strength requirements and
displacements of elastic columns. ANSYS results showed that Winter’s (1958)
model unconservatively predicted the brace force and displacement at the
midheight of the colhumn. When the brace stiffaess was twice stiffer than the ideal
stiffness, the total displacement was reported as 2.32 4, where 4, represents the
magnitude of initial imperfection. The brace force was also reported as 1.05% of
the buckling load. Winter’s model suggested that the total displacement is 2 4,
and the brace force is 0.8% of the buckling load.

The finite element program, ABAQUS (1995), was utilized in the analysis
of braced inelastic columns as discussed in the previous section. Details of
inelastic analysis process were also described. The magnitude of initial
imperfection was kept as A4,=0.002L where L is the braced length of the
column. The shape of initial imperfection was a symmetric half sine curve.

The ABAQUS results are plotted in Figure 3.23 and 3.24. F,, i the

figures represents the tangent modulus buckling load of a fully braced columm. The
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loads above the P_ in Figure 3.23 and 3.24 are dotted to show that they are

invalid because the tangent modulus buckling load is the true buckling capacity of
melastic columns. Figure 3.23 shows the relationship between the buckling load
and displacement at the midheight of the braced column. When the brace stiffness
is twice the ideal full brace stiffness by Winter, the total displacement at the
tangent modulus buckling load is 2.354, which is close to that of the elastic

columns (2.32 4,). Figure 3.24 displays the relationship between the buckling load

and the brace force. The brace force at the tangent modulus buckling load is
1.05% of the P, when the brace is twice stiffer than the ideal full brace. The

brace force is the same as the one for the elastic columns. It is concluded that the
brace strength requirements for elastic members can be applied to inelastic

members.

3.5 Summary

Brace stiffness and strength requirements for inelastic columns were
determined by experimental and analytical works. It was shown that Winter’s
fictitious hinge model can be applied to inelastic structures as well as elastic
structures. His simplified bracing formula which depends on buckling load and
column length can be utilized in the design of ielastic members. Pincus’
conjecture that inelastic members need stiffer brace than elastic ones was

demonstrated to be incorrect.

Brace strength requirements for inelastic members were also determined
from ABAQUS results. No difference between elastic and inelastic brace strength

requirements were observed.
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Figure 3.24 Load vs. Brace Strength Requirements for Inelastic Column



CHAPTER 4

FINITE ELEMENT METHOD

4.1 Introduction

The finite element method which is widely used in structural analysis is
employed to solve the buckling problem. Theoretical background of finite element
analysis and the application of the finite element method to buckling problems are
discussed in Chapter 4. The existing elastic buckling analysis program, BASP,
which utilizes the finite element method to find buckling loads of stiffened
members is also reviewed. The isoparametric plate element and layered beam
element which are used in the development of an inelastic buckling program in
Chapter 5 are discussed. The elastic stiffness matrices and geometric stiffness

matrices of those two elements are formulated.

4.2 Literature Review and Theoretical Background

The finite element method, which was derived using the principle of
stationary potential energy, can be effectively employed to solve general buckling
problems. Kapur and Harts (1966) solved the problem of plate stability using the
method. Barsoum and Gallagher (1970) solved torsional and flexural-torsional
buckling of one-dimensional prismatic members. Powel and Klingner (1970)
employed the finite element method to solve elastic lateral torsional buckling of
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steel beams. - Local and-distortional buckling was not considered in their model.

Akay, Johnson, and Will (1977) developed the two-dimensional elastic buckling
analysis program, BASP. BASP which stands for Buckling Analysis of Stiffened
Plates can find lateral torsional, local, and distortional buckling loads of structural
members. Further details of BASP are given in the next section. The application
of finite element method for inelastic buckling will be described in Chapter 5.
Buckling can be described in terms of potential energies. Cook et al
(1989) stated that buckling occurs when a structure converts membrane strain
energy into strain energy of bending with no change in externally applied load.
The principle of stationary potential energy is used to derive the buckling equation.

The total potential energy, 77,, is expressed as:
I,=U-V (4.1)

where U is the strain energy stored in the element and V is the external work done

by applied forces. The strain energy is given by

u=—| (o} (e} (4.2.2)

1
SIRCHLIGE | (42)
where {a} and {8} are the stress and strain tensor respectively, and the matrix

[E ] represents the material properties. The strain tensor is composed of linear and

nonlinear components. The strain components are expressed as follows;
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(4.3)

in which {g L} represents the linear strain and {3 NL} represents the nonlinear

strain. The general expression for the strain-displacement relationship is

[;'i]- = SLI]' + 8NLZ.7. (44)
where
1
1
gNZ'if = —Z‘(Mk,i uk’j) (45b)

Equations 4.5.a and 4.5.b indicate that the linear and nonlinear strains are
linear and quadratic finctions of displacements. When Equation 4.3 is substituted

into Equation 4.2, the strain energy becomes

v=[ ( (e ¥ [El{en )+ 2fern ) [ENer ) +{ew ) [El{en }) & (46)

According to Akay(1974), the critical equilibrium configuration or the
equilibrium at which the structure ceases to be stable is characterized by the
second variation of the potential energy changing the sign from positive to
negative. When the second variation of the potential energy is equal to zero, the
critical equilibrium is obtained. It also yields buckling equations and is expressed

as follows
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S§3IT,=0 4.7)

The second order differentiation of Equation 4.6 with respect to displacements

yields the following

FU
A D?

- {0}=([x]+[Kc]){oD} (48)

where [K] is the conventional stiffness matrix, [K(;] is the geometric stiffness
matrix, and {ﬁD} is the nfinitesimal displacement vector. The geometric stiffness

matrix [K G] is the function of membrane stress components that are present in the

element prior to buckling. In deriving of Equation 4.8, the last term in Equation
4.6 which is the quadratic function of displacements is discarded by assuming small
displacements. Deletion of the quadratic term will lead to a linear buckling

problem.

The nontrivial solution, {ﬁD};t {0}, of the Equation 4.8 exists only if the
determinant of the coefficient matrix of {BD} is zero. In other words, the

nontrivial solution is given by
[K]+[&6]|=0 (4.9)

cr >

If the reference level of load { f }r of is multiplied by the scalar multiplier A,., the

geometric stiffness becomes
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The multiplication by A, changes the intensity of stress state in the element but

does not alter the distribution of stress. Substitution of Equation 4.10 into

Equation 4.8. gives

(IK1+ 20 [Ke], %r;){ﬁD} - {0} (4.11)

Equation 4.11 is characterized as the standard eigenvalue problem whose
eigenvalues are buckling load multipliers. In buckling problems, the lowest
eigenvalue A, is usually of the greater interest. The buckling load is given by

1= {7}, (4.12)

This load is the bifurcation buckling load but may not be the true collapse load of a

member. The collapse load can be quite different from the buckling load because
of yielding and postbuckling strength. The eigenvector {o”D} associated with the
A, is defined as the buckling mode shape.

4.3 BASP

The linear elastic buckling program, BASP, developed by Akay (1974) is
described in detail because the inelastic buckling program developed herein is

based on the BASP approach. The program is restricted to the determination of
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out-of-plane buckling loads. —The plane refers to the plane of web. As stated

earlier, BASP can find the elastic distortional and local as well as lateral torsional
buckling strength of mono symmetric and double symmetric structures. The
program can also be used to study the behavior of braced members.

The computational process used in BASP is composed of three parts.
First, in-plane stress analysis of a member is performed to find the membrane stress
distribution under a reference load. It is followed by out-of-plane stiffness
analysis. In the second part, conventional and geometric stiffness matrices are
assembled. Last, the standard eigenvalue problem is solved to determine the
buckling load and mode shape. An inverse iteration method is used to solve the
eigenvalue problem.

The flange of a member is modeled using one-dimensional elements and the
web is modeled using two-dimensional elements. The BASP input model of the I-
shaped member is shown in Figure 4.1. Vertical and horizontal stiffeners are also
modeled using one-dimensional elements. Akay, Johnson, and Wil (1977)
observed that modeling of flanges and stiffeners as one-dimensional elements
resulted in a substantial reduction in computation time and no significant loss in
accuracy. Braces are modeled using elastic axial and rotational spring elements.

During the in-plane stress analysis step, quadrilateral plane stress elements
are used as two-dimensional web elements. Each node has two displacement
degrees of freedom. Flanges and stiffeners are idealized using one-dimensional
truss elements which have only axial stiffness.

Quadrilateral plate bending elements by Clough and Felippa (1968) are
used as web plate elements in the out-of-plane analysis step. The element has four

nodes, and each node has three degrees of freedom. Flanges are modeled using
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Flange (Beam) Element

Node

\

Web (Plate) Element

Figure 4.1 BASP Input Model of I-Shaped Member
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beam elements with three degrees of freedom: two bending degrees of freedom

and one torsional degree of freedom.

The geometric stiffness matrix is constructed by using the membrane stress
from in-plane stress analysis and by prescribing out-of-plane displacement shape
functions (Akay, 1974). Shape functions for the geometric stiffness matrix can be
the same as those for the plate bending element. In BASP, however, the geometric
stiffness matrix is derived using displacement shape functions simpler than those
for the plate bending stiffness matrix. This resulted in reduced computation time

with little loss in accuracy.

4.4 Elements for a New Program

The quadrilateral element used in the elastic buckling program, BASP,
does not have the capacity to deal with inelasticity (Johnson, 1995). In the newly
developed program, an isoparametric element which can accommodate inelastic
deformation is used as discussed later. The web of a member is modeled using the
isoparametric plane stress element for in-plane stress analysis and degenerated
isoparametric plate element for out-of-plane behavior. For the new program,
flanges and stiffeners of the member are modeled using the layered beam element
by Owen and Hinton (1980). The layered beam element discussed later can
account for the spread of inelasticity through the depth of the beam.

4.4.1 Web Plate Element

In the new inelastic buckling analysis program, the isoparametric elements

like the nine-node element shown in Figure 4.2 are used to model the web of a
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member. Each node of the element has five degrees of freedom. Two degrees of

freedom are for the plane stress elements and remaining three are for plate
elements.

A natural coordinate system, & and 77 shown in Figure 4.2, is used in the
formulation of an isoparametric element. Displacements at any point in the
isoparametric element are interpolated from nodal displacements using shape
functions. Coordinates of the point are also interpolated from nodal coordinates
using the same shape functions. The interpolation of displacements is expressed as

follows
u=y N;(&nu; . (4.13)

Although shape functions N; are defined in terms of natural coordinates £ and 7,
they are differentiated in terms of the global coordinates x and y to obtain strain
and stiffness matrices.

In-plane stress analysis is performed first to find membrane stresses and the
state of material. They are used in the formulation of the out-of-plane stiffness
matrix and geometric stiffness matrix. In-plane displacements # and v are

mterpolated from nodal displacements #; and v; of Figure 4.2. Displacements are

{:} []:)ff ]31}{:;}41\/ {d:} (4.14)

where {d,—} is the in-plane nodal displacement vector.

expressed as

=1

~
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Figure 4.2 Nine-Node Isoparametric Plate Elements
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Membrane strains {£} are obtained by differentiating displacements with

respect to the global coordinates x and y and are given by:

K Gy 0 |
(e} =[d][N]{d;} = [B]{d;} where [d]=| o© %y L @a5)
Jay Jox - -

where the strain vector, {g} , is composed of three in-plane strain components,

A

{g}=|_gx £, ;/ny.

The membrane stress-strain relationship follows Hook’s law which is

defined as:

{o}=[El{e} (4.16)

T
where {o} is the in-plane stress vector, {0}=Lax o, rxyj , and [E] is the

material property matrix. The elastic material property matrix is given by

1%
1 0 |, (4.17)
0
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In the matrix [£], £ and v represent Young’s elastic modulus and Poisson’s ratio,

respectively. Then, the plane stress element stiffness matrix from Cook (1983) is
defined as follows;

[&]= [[[B] [E][B]tdxdy. (4.18)

According to the survey by Harbok and Hurry (1984), there are almost 100
different types of plate elements available. Plate elements are derived from either
Kirchhoff plate theory or Mindlin plate theory. Kirchhoff plate theory assumes
that a line that is straight and normal to the midsurface before loading remains
straight and normal to the midsurface after loading. Thus, the theory neglects
transverse shear deformation. It is generally applied to a thin plate. Mindlin plate
theory allows transverse shear deformations so that a line that is straight and
normal to the midsurface before loading is assumed to remain straight but not
normal to the midsurface. Mindlin theory is applicable to thick plates as well as
thin plates. When thin plates are analyzed, Mindlin plate theory may yield less
accurate results than Kirchhoff plate theory because of non zero shear stiffness.

The eight-node and nine-node degenerated isoparametric shell element
which is developed by Ahmad et al. (1970) are used in this study. The element is
based on Mindlin plate theory. The advantage of the isoparametric plate element is
that the shape functions from plane stress elements can be used again for plate
bending element. Each node of the plate element has three out-of-plane

independent degrees of freedom: one translation, w, and two rotations, &, and

6, . The nine-node element and the three degrees of freedom at node 7 are shown

in Figure 4.2.
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The moment-curvature and the transverse shear force-strain relationships

of Mindlin plate theory (Cook et al., 1989) are given by:

~

(M), ) D D 0 0 0 ][ 6,

M, vD D 0 0 0 6,

My, p=- 0 (1-v)D/2 0O 0 {0, +6,,p (4.19)
0, 0 0 Gt 0 || 6,-w,

(0] | 0 0 0 Gut|| 0x-w,

where M represents bending moments, O denotes transverse shear forces, v is

Poisson’s ratio, 7 is the thickness of the plate, G,, and G,, are transverse shear

moduli, and D is called the ‘flexural rigidity’ and defined as

Ef

P=a-v) (420)

The shear stiffness terms G,,¢ and G, ¢ in Equation 4.19 may be divided by 1.2
to account for parabolic distributions of shear stresses 7, and 7.
Displacements (w, 6,, and 6,) are interpolated from the out-of-plane

nodal displacements {do} using shape functions &,. The relationship is expressed

as follows:
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(u) 1 A (u

Vi 0..0]
t } Z[o N, OH } or  {u}=[N]|{d,} (4.21)
6,] =0 o0 N,

where N is the number of nodes in the element. Curvatures {x}are derived from

displacements and given by
(6 0 Jh O
0, 0 0 Jloy
{<}=16,,+6,, t =[5]{u} where [J]=| 0o  5/ay g/ox|(4.22)
6,-w, -J/dy 0 1
L Qx_w,x J _—é’/é’x 0 1 ]

When {u} is replaced by [N ] {d 0} from Equation 4.21, curvatures become

{<}=[21IV o} =[B]{4.} (4.23)
Then, the plate bending stiffness matrix becomes
[x]=] [B [Dy][Bla4 (4.24)

The plate element stiffness matrix [K] can be divided into two matrices: a
bending stiffhess matrix [Kb] and a transverse shear stiffness matrix [KS] The

two matrices are defined as follows:



(=1 Fin UrlisrlIlelIn lrli (4.95)
L] :'Al.“b.l lUM.IL“bJWj ! :]A[_“s_] l‘/M“.“SJw“j U=
&, ] K]

The matrix [By | of Equation 4.25 is associated with curvatures and is obtained by

replacing the fourth and fifth row of [B] with zeros. The matrix [B;] is associated

with transverse shear strains and is obtained by placing zeros at the first, second,

and third row of [B]

A numerical integration technique is used to obtain the stiffness matrices
because of its convenience and easy implementation. In this study, the Gauss
quadrature rule is employed for numerical integration. For eight-node and nine-
node isoparametric elements, a 3x3 (nine) mesh of Gauss points is needed for full
numerical integration. Full integration works satisfactorily with thick shells and
plates. However, it is reported (Cook et al, 1989) that fully integrated
isoparametric elements for thin plates suffer from excessive shear rigidity. The
phenomenon is called ‘locking’. Zienkiewicz, Taylor, and Too (1971) proposed a
reduced integration technique to avoid shear locking problems. The reduced
tegration scheme utilizes a 2x2 (four) mesh of Gauss points to form the bending
and shear stiffness matrix. Pugh, Hinton, and Zienkiewicz (1978) further
demonstrated the effectiveness of reduced integration techniques for thick and thin
isoparametric plate elements. In this study, both full and reduced numerical

integration are tried.

The geometric stiffness matrix of the plate element [K G] is formed using

membrane stresses from the prior in-plane stress analysis. Membrane forces which

are a summation of membrane stresses through the thickness are defined as
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The geometric stiffness is derived from the stationary potential energy and given
by

[K6]= [ [G]TL]\,V; %}[G]dxdy (4.27)

where the matrix [G] is obtained from a small rotation-displacement relationship

and defined by

{2} ~(o1a} tom w1 .

In the derivation of the geometric matrix, the out-of-plane displacement, w, and

membrane forces, N,, N,, and N,

are assumed to be independent of each
other.

The geometric stiffness matrix of isoparametric plate elements is also
formed using the numerical integration technique. When the in-plane analysis is
completed, membrane stresses at Gauss points are saved. Those stresses are

utilized in the formation of the geometric stiffness matrix.
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4.4.2 Flange Beam Element

The layered beam element by Owen and Hinton (1980) is used to model
flanges and stiffeners in the new program. As shown in Figure 4.3, the beam is
subdivided into N layers. The layered beam can follow the spread of inelasticity
through the depth of the beam by assessing the state of the material at each layer
during in-plane and out-of-plane analysis.

The axial stiffness (EA4), bending stiffness (£7), and torsional stiffness (G.J)
of the layered beam is calculated as:

N
I=1
N
EI="(E btz +Et, b [12) (4.30)
=1
N
GJ=Y.G bt} /3 (4.31)
I=1

where E; is the Young’s modulus of the layer, GI is the shear modulus of the

b
<

2o ] [T [¥] T

1 by J

&S >

[y

Figure 4.3 Cross-section of a Layered Beam
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Figure 4.4 Degree of Freedom for a Beam Element

layer, b; is the width of the layer, ¢, is the thickness of the beam element, and

the z-coordinate at the middle of the layer.

Four nodal degrees of freedom per node for the layered beam element are
shown in Figure 4.4. During in-plane stress analysis, only the axial degree of
freedom u is utilized. The rest of the degrees of freedom at each node, an out-of-
plane displacement (w) and two rotations (&, and &), are used in out-of-plane
analysis:

The stiffness matrix of a truss element from Cook et al. (1989) is adopted
to idealize the in-plane stiffness of the beam element. The stiffness matrix of the

truss element is defined as follows:

|&7]= —Elé{ ! _1} (4.32)

where [ is the length of the element and EA4 of Equation 4.29 is used as the axial

stiffness for the layered beam element.
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The bending and torsional stiffness matrices of the beam elements are

needed for the out-of-plane buckling analysis. The degrees of freedom w and 6,

in Figure 4.4 are related to the flexural behavior of the beam element in the x-z

plane and the degree of freedom 6, represents the torsion of the beam element.
The flexural stiffness matrix, [K?] and the torsional stiffiess matrix, [K%’] for

the beam element (Cook et al., 1989) are given by:

[12EI 6EI 12EI  6EI i

I P I?
AEl  6EI 2Kl GJ GJ

b l 2 l b
[Kf B 121EI 6El [KT ]" IGJ G§ (4.33)

sym. [3 —1—2 ‘—l“ —l—

AE]

i /.

where EI is the bending rigidity about y axis and G/J is the torsional rigidity about
the x axis. The bending and torsional stiffness given in Equation 4.30 and 4.31 are
used for the layered beam element.

The geometric stiffness of the beam element depends only on the axial load
and the length of the element. The geometric stiffness matrix for the beam

element, [K é’;] , from Cook et al. (1989) is given as follows:

[x&|= ?[_11 _11] (4.34)
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where P represents the axial load. The axial load of the layered beam is obtained

N
using P=>0,bt - Degrees of freedom associated with [Ké] are out-of-plane
I=1
displacements, w; and w;.
The geometric torsional stiffness matrix of a beam element by Johnson

(1972) is defined as

== ] @29

where / is the length of the flange. GT is the geometric torsional stiffness defined

as follows:

br/2
GT = jax yrdd=t, I_g;//zax y2dy (4.36)
A

where o, is the axial stress, and b, is the depth of the beam. In the layered beam

approach, the geometric torsional stiffaess is obtained by adding the stiffness from
the each layer.



CHAPTER 5:

Inelastic Finite Element Analysis Program

5.1 Introduction

The inelastic buckling analysis program developed herein is named IBASP.
When applied stress or stresses exceed the yield strength of a material, plasticity
theories are used to describe the behavior of the material and form stiffness
matrices for finite element analysis. In this chapter, plasticity theories are reviewed
first. Because of material inelasticity, non-linear analysis methods are required.
Tteration methods for material non-linearity problems are also reviewed. The
routine which is required to determine the inelastic state of the material during
iterations is discussed. Later, eigenproblem solution techniques are discussed to
determine buckling loads because the buckling equation is considered as a standard
eigenproblem. At the end, the limits of IBASP and a residual stress option are
discussed.

Two plasticity theories are employed in this study. An incremental
plasticity theory relates the increment of plastic strain to the increment of stresses.
The theory depends on stress history. In a deformation plasticity theory, total
plastic strain is simply related to total stress. Thus, the deformation theory is
independent of stress history. It is reported by Stowel (1948) and Lubliner (1990)
that, while the incremental theory is more logical, results from plate buckling tests
show that the deformation theory works better. Predicted plate buckling loads by
the incremental theory tend to be higher than experimental buckling loads. Results
from the two theories will be compared with results from stiffened plate buckling
tests and one theory will be selected in Chapter 6.

72
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5.2 Incremental Theory of Plasticity

The three components of the incremental theory of plasticity, which are a
yield surface, a flow rule, and a hardening rule, are reviewed.

5.2.1 Yield Surface

The yield condition for a material defines the limit of purely elastic behavior
under any combination of stresses. According to Owen and Hinton (1980), two
yield criteria are generally used for metals: the Tresca yield criterion and the von
Mises yield criterion. In Figure 5.1, both criteria are plotted in a two-dimensional
principal stress plane o, o,. The yield surface is defined as the shape of the yield

function in the stress plane.

2 Tresca

>

von Mises

(o3 >0,

Figure 5.1 Tresca and von Mises Yield Surface
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The Tresca yield criterion (Lubliner, 1990) assumes that plastic

deformation occurs when the maximum shear stress over all planes reaches the
value of the maximum shear stress in yielding in a tension test. The Tresca yield

criterion F is expressed as

Fz(amax;‘fmin)_% (5.1)

where o ,, and o, represent the maximum and minimum principal stress and
oy is the tensile yield strength of the material. When F is less than zero, the

material is in elastic state. The material is on the yield surface when F is equal to
Zero.
The von Mises yield criterion (Hunsaker, 1973) assumes that yielding

occurs whenever the second invariant of the deviatoric stress tensor (J, ) exceeds

a certain value. The von Mises yield criterion F from Tassoulas (1995) is

expressed as
F=,3J, -0y (5.2)
where J, is the second invariant of the deviatoric stress tensor which is defined as
Jy = %{S}T {s} (5.3)

where {S} is the deviatoric stress tensor. It is derived from
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Si]’ =0;

where o, is the hydrostatic stress which is the average of principal stresses,
o, =(0,+0,+0,)/3, and & is the Kronecker delta which is defined as & =1if
i=j and 6;=0 if i#j. The von Mises yield criterion is adopted in this study
because it better represents material behavior than Tresca criterion for most
metals. The plane stress version of the von Mises yield criterion (Crisfield, 1990) is

given by

F=(ai+a§,—ax o, +3r§y)—0'y ’ (5.5)

5.2.2 Flow Rule

The incremental theory of plasticity which is also called the flow theory of
plasticity assumes that plastic strain is governed by rate equations (Lubliner, 1990).
In other words, the theory relates the plastic strain rate to the rate of yield
criterion. The direction of plastic strain is determined by the flow rule.

The strain increment after yielding is composed of the elastic and plastic

strain increments as follows:

d{g}=d{ge}+d{gp} (5.6)
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where d { 8} is the total strain increment, d { ge} is the elastic strain increment,

\ J

and d {gp } is the plastic strain increment. The elastic strain increment is easily

obtained using an elastic constitutive law like Hook’s law. The flow rule
determines the increment of plastic strain. The flow rule (Hunsaker, 1973) is

expressed as follows:
og
dieP }=di—"=~ 5.7

where d/ is the scalar multiplier, g is the plastic potential function, and {c} is the

stress vector. If g is equal to the yield function F, the rule is called the associated
flow rule. If g is not equal to F, then it is called the nonassociated flow rule. The

associated flow rule is defined as

d{gp}==dz—é!1- (5.8)

{c}

Equation 5.8 is also called the normality condition because, as shown in Figure
5.2, the vector JF / 0”{6} is normal to the yield surface F = 0. The normality

condition means that the direction of plastic flow is normal to the yield surface.
The normality condition is an acceptable assumption for metal (Owen and Hinton,
1980).

Hunsaker (1973) and Daye and Toridis (1991) define the scalar multiplier
dA as
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do
)
A
Figure 5.2 Normality Rule
dzP
dr=25 (5.9)
20

where d 27 is the increment of effective plastic strain and & is the effective stress.

The increment d z” and the effective stress o from Tassoulas (1995) is given by

a5# = | 2{ae) {as?)

(5.10.a)

(5.10.b)
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Figure 5.3 Kinematic Hardening

Figure 5.4 Isotropic Hardening
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5.2.3 Hardening Rule

A hardening rule is used to describe the behavior of strain hardening
materials. It relates strain hardening of arbitrary loading history to a simple
loading history from experiments (Hunsaker, 1973). In general, tension test results
are used as experimental stress-strain relationships.

Several hardening rules have been proposed and developed (Hunsaker
(1973), Crisfield (1991), Tassoulas (1995), and Lubliner (1990) ). Deformation,
expansion, and translation of the yield surfaces are major factors that differentiate
the various hardening rules. An isotropic hardening rule, a kinematic hardening
rule, and a Mroz hardening rule are some of the proposed hardening rules.

The isotropic hardening rule assumes that the size of the yield surface is
increased while the shape of the surface is not modified. The size of the yield
surface depends only on the plastic strain history. The yield surface for kinematic
hardening does not change in size and shape but the surface translates in the stress
plane. Figure 5.3 illustrates kinematic hardening on two-dimensional stress space.
Mroz (1967) proposed another kinematic hardening. The Mroz hardening rule
assumes that the yield surface translates within a field of surfaces of constant
work-hardening moduli. In this study, the isotropic hardening rule is employed.
According to Hunsaker (1973), it is simple to use and it takes the least amount of
computer storage for the loading history without unloading and load reversal.

Isotropic hardening in two-dimensional stress space is illustrated in Figure
5.4, The yield surface expands from the initial surface F; to the subsequent yield

surface F; as the material is strain hardened. The von Mises yield surface was

defined in Equation 5.2. The yield function F* with isotropic hardening (Tassoulas,
1995) is defined as follows:
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F({o}#)=5 - o4(2%) =37, - oy (2?) (5.11)

where 27 is the effective plastic strain and o,(2”) is the yield strength of the

material that is the function of effective plastic strain. z” is obtained from the

summation of the increment of uniaxial effective plastic strain de” of Equation

5.10.a.
5.2.4. Elasto-Plastic Stiffness Matrix

When plastic deformation begins, the elasto-plastic incremental stress-stain
relationship is used to define the plastic behavior of the material. Several
references (Hunsaker (1973), Daye and Toridis (1991), Tassoulas(1995), Crisfield
(1991), Meek and Lin (1990), Bushnell (1977), and Owen and Hinton (1980)) give
procedures to derive the elasto-plastic stiffness matrix. The procedure used by
Hunsaker (1973) is employed in this study.

The elastic incremental stress-strain relationship is defined as
d{c}=[D.|d{e} (5.12)
where [De] is the elastic constitutive matrix. As discussed earlier, the total strain

increment is composed of the elastic and plastic strain increment. The elastic strain

mcrement is derived from Equation 5.6 as
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and substituted into Equation 5.12. Then, the incremental stress-strain relationship

becomes

a{o}=[D.](d{e}-a{s"}) (5.14)

The plastic strain increment which is obtained using the associated flow rule,

Equation 5.9, is given by

afer = L OF 05

=25 51T = Gy E (5.15)

When Equation 5.14 is multiplied by the term {55 / 5{0}} on each side, the

equation becomes

o5 | __[e7 ] 00 _ 1
i -G} llao-JGa) oo

The new term, a plastic modulus, is introduced to relate do and d&?f. The
tangent modulus for the effective stress-strain relationship in the inelastic region is

given by
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de de* +dg” d%+d§p
The above equation yields the plastic modulus £, which is defined as:
40 _p - EE (5.18)

de’ ! E-E

If the plastic modulus, Equation 5.18, is substituted into Equation 5.16, the

increment of effective plastic strain becomes

—d{¢} (5.19)

65\ . .05
E + ——~—} [De]g-{-a

From Equations 5.14, 5.15, and 5.19, the elasto-plastic constitutive matrix [Dep]

for the incremental plasticity theory is obtained as

d{o}=[Dy]ale} = (D]~ [D,]) e} (5.20)

where
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The elasto-plastic stiffness matrix is used in the in-plane stress analysis and in the

(5.21)

[2:]-

derivation of the out-of-plane plate stiffness matrix.

5.3 Deformation Theory of Plasticity

The deformation theory of plasticity which is sometimes called a total strain
theory assumes that the plastic strain tensor is simply determined by the stress
tensor (Lubliner, 1990). Because of its stress history independence, the
development theory is mainly applied to proportional or radial loading cases and
yields the exact solution (Lubliner, 1990). However, the response of structures
under non-proportional loading, such as axial loading followed by torsion, is not
predicted correctly. Budiansky (1959) showed that the theory is also suitable for
near proportional loading. Despite its shortcoming, the deformation theory has
been extensively used in the buckling analysis of plastic plates. Stowel (1948),
Pride and Heimerl (1950), and Pifko and Isakson (1969) applied the deformation
theory to describe plastic buckling of plates and reported good agreement with
experimental results. Tests of long aluminum-alloy cruciform-section columns
which were designed to buckle in torsion rather than flexure had been conducted
by Gerard and Becker (1957). They reported that the inelastic modulus for pure
twisting of plastic plate is very close to what the deformation theory predicts.
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Stowel (1948) defined the stress-strain relationship for the deformation

theory using the effective stress and strain. The effective stress o and strain ¢ for

plane stress are defined as

E=\/(a§+ai—axay+3riy) (5.22)
2 y5

- 2,2

8=—\7—§ 8x+8y+8x8y+—4£ (5.23)

The effective stress and strain are assumed to be related as follows:

s = (5.24)

o
ES

Ql

&

Figure 5.5 Effective Stress and Strain
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where E_ is the secant modulus defined by the above equation and illustrated in

Figure 5.5 . For strain hardening material, the secant modulus is larger than the

tangent modulus E; but smaller than the elastic modulus E. Then, stress-strain

relationships for plane stress become

1 1 1 37,
(O'x_ao-y) gyzm(ay——o_x) V= Ey (5.29)

s

The incremental stress-strain relationship for the deformation theory of
plasticity was given by Stowel (1948) and Hutchinson(1974). The relationship
from Stowel (1948) was used by Pifko and Isakson (1969) and El-Ghazaly et al.

(1984) and employed in this study. The elasto-plastic constitutive matrix [Dep] is

given by

4 o* 2 o,0 T, 0
37 3T -7 cy_yz x
4 o’ 7.0
— _ Y Xy "y
[D.,]=E, e (5.26)
1 7
sym. §+ —

where ;/=E%: -1.
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5.4 Plasticity of the Beam Element

The flanges of the member are modeled using layered beam elements as
discussed in Chapter 4. When plastic deformation occurs, the spread of plasticity
is monitored at each layer. Owen and Hinton (1980) assumed that a layer becomes
plastic when the middle of the layer reaches the yield stress of the material.

The incremental inelastic stress-strain relationship of the layered beam will
now be defined for finite element analysis. The total strain increment in the

inelastic range is composed of elastic and plastic components as follows:

de =de, +de, (5.27)
The increment of stress in the plastic range is defined as:
do=Ede,=E(de-de,) (5.28)

The plastic modulus E,, which relates the increment of stress to the increment of

plastic strain was defined in Equation 5.18 and restated here as

o _do_ EE

(5.29)

The plastic strain increment de&, is derived from the above equation as
de,=d O’/Ep and substituted into Equation 5.28. Then, the elasto-plastic

stiffness £, can be derived as |
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_d_o'_ EEP
P dg E+E,

(5.30)

The elasto-plastic stiffness is used in the derivation of the axial and bending
stiffnesses of the yielded layer (Equation 4.29 and 4.30). Inelastic shear modulus
which determines the torsional stiffness of the yielded layer will be discussed in

next section.
5.5 Inelastic Shear Modulus

The inelastic shear modulus is the one of critical factors which influence the
torsional and lateral flexural buckling capacities of beams. In previous sections,
two plasticity theories were discussed. In this section, they are reviewed to define
mnelastic shear modulus. Afier the discussion of plasticity theories regarding shear
modulus, literature dealing with the inelastic shear stiffness is reviewed.

5.5.1 Plasticity Theories
The deformation theory of plasticity predicts a decrease of the inelastic

shear modulus in the plastic range when shear stresses do not exist. The tangent

shear modulus is obtained from Equation 5.26 as follows:

Gr=(E, /3)+(7%, [0)(E,[E;-1) (5.31)
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Equation 5.31 shows that the inelastic shear modulus is only a function of the

secant modulus when shear stress is absent (7, =0).

Traditionally, the incremental theory of plasticity has been considered to
have better theoretical backgrounds than the deformation theory. The incremental
plasticity theory assumes that the increment of plastic strain is proportional to the
corresponding deviatoric stress increment. If there is mo shear stress i the
inelastic member, inelastic shear strain is zero and the total shear strain of the
inelastic member is equal to the elastic shear strain. As a result, inelastic and
elastic shear modulus values are the same. Plate buckling loads predicted by the
incremental theory (Damkilde, 1985) are reported to be higher than those from
experimental results.

It is concluded that, when shear stresses exist in a member, both
incremental and deformation plasticity theories state that the shear modulus is
reduced in the plastic range. If there are no shear stresses in the member, the
deformation theory predicts a decrease of the shear modulus as a finction of the
plasticity level. However, the incremental theory of plasticity indicates no

difference between elastic and inelastic shear modulus.
5.5.2 Literature Review

Neal (1950) proposed an initial torsional rigidity of yielded beams through
theoretical and experimental studies. He employed the incremental theory of
plasticity to show theoretically that the initial inelastic shear modulus is equal to
the elastic one. During experiments, flexural and torsional loading was applied to
beams in sequence. Some beams were partially yielded by flexural loading before

torsional loading was applied. The test results indicated that initial torsional
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rigidities from partially yielded beams were very close to those from elastic beams.

He concluded that the elastic shear modulus should be used as the initial inelastic
shear modulus. Payne and Czyak (1960) tested thin-wall polycrystalline cylinders
and reported the same results.

Haaijer (1957) suggested an inelastic shear modulus for A36 steel as
2400Ksi. The incremental theory of plasticity was used in the derivation of the
modulus. The theory states that the inelastic shear modulus is initially equal to the
elastic one but is reduced as the level of shear stress increases. Haaijer chose the
reduced modulus from the strain hardening range as the inelastic shear modulus.
He also carried out a few tests using structural tubes to find the relationship
between shear strain and shear stress. Test results showed the non-linear shear
stress-strain relationship when the member was compressed to strain-hardening
range and then torsion was applied.

An often quoted inelastic shear modulus was suggested by Lay (1965). He
used a slip line theory and local buckling tests to find the inelastic shear stress-
strain relationship. The suggested shear modulus depends on the ratio of the

elastic modulus E to the strain hardening modulus Eg,. The inelastic shear

modulus G is defined as

E
Gy =Gg| 2 1+—/E—ST— (5.32)
4(1+v)

where Egp is the strain hardening modulus and v is the Poisson’s ratio. However,

Lay’s recommended formula lacks generality and implies impossible values. For

example, when the strain hardening modulus exceeds (E/4(1+v)), Equation 5.32
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other hand, the shear modulus will go to zero when the state of the material is in
the yield plateau region ( Egp = 0.0).

Shammamy and Sidebottom (1967) tested three different materials to
compare the incremental theory and the deformation theory under proportional and
non-proportional loading. Tubes made from a non strain-hardening steel, a strain-
hardening steel and a strain-hardening aluminum alloy were subjected to tension-
torsion and torsion-tension loading. During non-proportional tension-torsion
loading tests, tension was first applied up to a plastic range and held constant while
torsion was applied. Results indicated that the initial plastic shear stiffness was the
same as the elastic one both for strain-hardening and for non strain-hardening
material. However, the shear stiffness dropped rapidly with an increase of torsion.
Similar trends were observed also in torsion-tension loading tests. The axial
stiffaess of inelastic tubes was initially equal to the elastic stiffness but decreased as
the axial stress was increased. Test data indicated that the incremental theory of
plasticity was better suited to describe the response of strain-hardening and non
strain-hardening material under non-proportional loading.

Popov and Petersson (1978) conducted a series of uniaxial loading and
torque tests using structural tubes to find inelastic stiffness for general loading
cases. Only individual loading, axial loading or torque, was applied to each
specimen. No combined effects of axial loading and torque were measured during
experiments. They found that the shear stress-strain curve generalized using
effective stress and strain is similar to the axial stress-strain curve. It was
concluded that the inelastic shear modulus depended on the tangent modulus of

uniaxial stress-strain curves and defined as:
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G, ==LG (5.33)

The suggested shear modulus was not applicable to inelastic buckling analysis
because the modulus was found from “shear only” tests with substantial shear
strain. During buckling, the main source of inelasticity was not from shear strain
but from axial deformation.

Inelastic beam buckling equations by Timoshenko and Gere (1963) were
modified from the elastic buckling one (Equation 2.2) by multiplying the ratio of

(ET / E) . The underlying assumption of these beam inelastic buckling equations is

that, in the inelastic range, the flexural and torsional rigidities are reduced in the
same proportion. This assumption would lead to under valued buckling capacities
when applied to test data by Neal (1950) and Shammamy and Sidebottom (1967).
The data showed no decrease in the initial plastic shear stiffness.

In the development of the program IBASP, both the incremental theory
and the deformation theory were tested. When the incremental theory was
employed, it was assumed that the inelastic shear modulus of the beam element
was equal to the elastic value. The shear modulus was automatically reduced

when the deformation theory was used.
5.6 Solution Method for Non-Linear Problems
Non-linear problems generally arise from material and/or geometric non-

linearity. In this section, the method and algorithm used to solve non-linear

problems will be discussed. Plasticity theories have been discussed and melastic
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stiffiess matrices associated with theories have been generated in previous

sections. Those matrices will now be used in the non-linear solution process.

The solution process for non-linear problems is divided into two phases.
One phase is the iteration method for non-linear problems. Within each iteration,
another routine called a ‘plasticity algorithm’ (Crisfield, 1991) is used to determine
the state of the material. The plasticity algorithm is the inner loop of the first
phase.

The finite element equation for material non-linearity (Tassoulas, 1995) is
defined as follows:

[ [, 1B [D] [B]dV}d{A U} =(p+48)iP} - | 1B ({0} +{ao})av  (5.34)

where IV[B]T [D][B]dV is the tangent stiffness matrix [K], d{4U} is the

increment of displacements, (,B +A,B) { P} is the external or applied load, S and AS
are the load parameters, and IV [B]T({a} + {AO’}) dV is the internal load.

The right hand side of Equation 5.34 represents out-of-balance load {R}.
The matrix [D] of the tangent stiffness matrix [K] is the constitutive matrix and is a
function of the state of the material. Figure 5.6 illustrates the non-linear finite
element equation.

Equation 5.34 cannot be solved directly because the stiffness matrix
depends on the state of the material as shown in Figure 5.6. Iteration methods are
required to solve Equation 5.34. At ith iteration, the tangent stiffness matrix and

the out-of-balance load vector are
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Load A
[X]
CB +A,B1P } / Q { R}
P
B (P} 7
d{AU}
>
{AU} Displacement

Figure 5.6 Non-Linear Problem Solution Procedure

[ ] J,[8 [D ] (5.35)
()= (rrarip }“f,,[B]T({U}+{AO‘}(i))dV (5.36)

Then, Equation 5.34 becomes
[x) |ttavy = {rRO} (5.37)

The above equation is solved for d{AU}. The updated displacements and strains

arc
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{ALT(1+1)} ‘Arr(l)]_'_d{/jbr} (538)
{As(’+l)} {AU("“)} (5.39)

The new state of material is determined from the strain vector {AS(HI)}. The

process is iterated until convergence criteria are satisfied.

Bushnell (1977), Bathe and Cimento (1979), Cook et al. (1989), and
Crisfield (1991) suggested iteration methods for non-linear problems like Equation
5.34.  They recommended methods such as a Newton-Raphson method, a
modified Newton-Raphson method, a quasi Newton-Raphson method, and an arc-
length method. The main difference between the iteration methods lies in the
formulation and update scheme of the tangent stiffness matrix. The modified
Newton-Raphson method which updates the tangent stiffness matrix infrequently is
employed in this study. It is easy to implement and less influenced by the load
increment but is slow to converge. It also takes more iteration cycles than the
other methods.

Another routine, the plasticity algorithm, is needed to determine the
material state and form the corresponding tangent stiffness matrix. Stresses are
updated through the integration of an elastic-plastic conmstitutive law in the
plasticity algorithm. Krieg and Krieg (1977) reviewed algorithms for elastic-
perfectly plastic material. Schreyer et al. (1979) studied a number of plasticity
routines for isotropic hardening material Dodds (1987) studied plasticity
algorithms and recommended the elastic predictor-radial return algorithm over
other routines. He suggested that the best convergence is achieved when the

constitutive matrix [D], which is consistent with the elastic predictor-radial return
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algoriths

algorithm for isotropic hardening.

The elastic predictor-radial return algorithm is used in this study. The
‘elastic predictor’ means that, initially, the elastic stress-strain relaﬁonship is
assumed. Thus, stresses are calculated using the elastic constitutive law. If the
state of material is not elastic, stresses are returned to the yield surface. It is also
assumed that the effective stress and strain follow the uniaxial test results. The
procedure suggested by Tassoulas (1995) and Dodds (1987) is employed.

First, terms related with the stresses and strains are defined. Stresses are
divided into deviatoric and hydrostatic stresses as defined in Equation 5.3. The
strain increment is also split into two parts: the deviatoric and the volumetric strain

increment. The stresses and increments of strains are expressed as follows

=1} {0} {8)={o}-{i}o (5.40)
Ag = {i}T {Ag} {Ae} = {Ag} - —31— {1} Ag (5.41)
where {i}T =[l 1 1 0 0 0], o and {S} represents hydrostatic stress and

deviatoric stress, As and {Ag}are the volumetric and deviatoric strain

increments. The relationships between stresses and strains are defined as

c=Ke (5.42)
SY=2G{e (5.43)
{s}=2G{e}

where ¢ is volumetric strain, X is the bulk modulus, and G is the shear modulus.

m, is used. Tassoulas (1995) also used the elastic predictor-radial return..........._._.
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the displacement increment {A U } Because an elastic stress-strain relationship is

initially assnmed in the elastic predictor-radial return algorithm, trial stresses are

calculated using the elastic constitutive law and added to the existing stresses

(¢ and {ST}).

ol =c+K e (5.44)

{s"}={s}+26{ac} (5.45)

where the superscript 7 represents frial state. The trial effective stress becomes

5" = s} {57 (5.46)

o < UY(EP ) that means &' is less than the current yield stress, the

material is still elastic. Then, the stresses and plastic strain become

{o} +{a0}={s"}+{i}o" (5.47)
P =gP (5.48)
The above equations mean that the elastic trial stresses become a new level of

stresses and effective plastic strain is not increased. The elastic constitutive matrix

is used in the calculation of the tangent stiffness matrix.
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Ifel>0 ¥ (Z” ), then-plastic-deformation-is-started:Elastically predicted——

trial stresses need to be modified to satisfy the yield criteria. The increment of

effective plastic strain AZ? is obtained from the following equation:
oy (87 +487) +3G 48" =5" (5.49)

The increased effective plastic strain &7 +Az7 leads to higher yield strength
oy (’é"’ +Agr ) Then, the increments of stresses are determined and added to

previous stresses as follows

(S}+{4S} = M{ST} (5.50)
{0} +{ao}={s}+{aS}+{i}(c+40) (5.51)
EP = 2P + AgP (5.52)

The above algorithm is derived for three-dimensional stress-strain relationships.
The elastic predictor-radial return algorithm for a plane stress condition is more
complex than the above derivation because Ae, is required for the calculation of

trial stresses while Ao, should be zero. The algorithm which satisfies the plane

stress condition and the consistent constitutive matrix recommended by Dodds

(1987) is given in Appendix A.
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5.7 Eigenproblem Solution Routine

Because buckling equations are considered as standard eigenproblems,
eigenproblem solution methods are used to solve buckling equations. Eigenvalues
and eigenvectors of the buckling equation represent buckling loads and mode
shapes respectively. Iteration methods are generally preferred for solving large
size eigenproblems. A power method, an inverse iteration method, a subspace
iteration, a Lanzos method are generally recommended iteration methods for large
size problems (Humar, 1990).. An appropriate iteration method is selected
depending on the solution requirements.

The conventional and geometric stiffness matrices are obtained from the in-
plane and out-of-plane analyses as discussed in Chapter 4. The buckling equation

is restated here as
([K]+ &) {U}t=0 (5.53)

The nontrivial solution of the above equation exists only when the determinant of

stiffness matrices is equal to zero. The determinant is expressed as follows:
K]+ A[KG]|=0 : (5.54)

For the given state of stress, the eigenvalue A assumes certain values to satisfy the
above equation. When the critical (buckling) state of stresses is reached, the
eigenvalue A is equal to one (Gupta, 1978). Thus, it can be stated that buckling
happens when A =1.
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A Sturm sequence property (Gupta, 1973 & 1978) is used to determine .

whether or not the critical state is reached. This property states that the number of
changes in signs of leading principal minors of a standard eigenproblem like ([4] -
A[B]) is equal to the number of eigenvalues less than the current A. Leading
principle minors are obtained by factorizing the matrix. The matrix
([K] +/'L[KG]) is factorized into [L] [D][L]T where [L] is the lower triangular
matrix and [D] is the diagonal matrix: [D]=d, [I] where [I] is the identity
matrix. The diagonal elements of the matrix [D] represent leading principal
minors. The Sturm sequence property can be restated as the number of negative
elements in [D] equals to the number of eigenvalues smaller than 4. When the
critical state A =1 is reached, a slight increase of A, say A+« , results in one
negative element in the matrix [D]. The slight decrease of A, 41—, will lead all
positive elements in [D]. « represents the solution tolerance and can be changed.
By using the Sturm sequence property, the buckling load can be determined by just
looking at the leading principal minors of stiffness matrices rather than calculating

eigenvectors as well as eigenvalues to see whether A =1. The algorithm given

below is used to find the buckling load.

1) read or set the load increment AS{P}

2) the total load becomes (,B + A,B) {P}

3) perform in-plane and out-of-plane analysis and form [K] and [K ;]

4) add two matrices to form [Ks] =[K]+ (A+a)[KG] where 1 =1 and o

is the allowable error

5) factorize the matrix [K |
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_____6) determine whether all leading principal minors are positive

If yes, then increase the load by going back to step (1) and start the
procedure again with the increased load
If not, the buckling load may be obtained; go to step (7)
7) form a new matrix [K,|=[K]+(A-a)[K] with =1
8) determine whether all leading principal minors are positive
If yes, then the critical buckling state is reached; stop routine
If not, the buckling load is passed; go to step (9)

9) reduce the load increment by half AfS = A'% and go back to step (3)

After finding the buckling load, a corresponding buckling shape is determined
using the subspace iteration method with shifts (Humar, 1990). A few iterations
would be enough to find the buckled shape when the true critical state is reached.
As shown in the above routine, the load increment is reduced by half when
the increased load exceeds the buckling load. The increment is also reduced when

the in-plane stress analysis routine does not converge in a given number of in-plane
iterations. When the load increment is less than /x707'? the program is stopped

but still calculates a buckled shape. The program will issue a warning when that
happens.
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5.8 IBASP Program

The details of inelastic finite element analysis have been discussed. In this
section, programming details and the limit of IBASP are discussed. The residual
stress option in IBASP is also discussed. The sample input file for IBASP is given
i Appendix B.

5.8.1 IBASP Programming and Limit

IBASP was programmed using FORTRAN 77 and compiled using a
WATCOM FORTRAN 77% compiler (WATCOM, 1993). The graphic routines
from the compiler were also used to draw a buckled shape. The program was
compiled for MS-DOS and needs a DOS extender file, DOSYGW.EXE, in the
directory which is running. A Personal Computer with 486 or Pentium chips is
preferred to run IBASP. The examples of Chapter 6 are executed on a 486
Personal Computer. The maximum number of elements and nodes allowed in
IBASP is 40 nine-node elements and 200 nodes. The 200 beam elements used to
model the stiffeners and flanges are allowed in IBASP.

The program generates two output files. One is a ‘ibo’ which has general
mformation like boundary conditions, coordinates of nodes, buckling load, stress
distributions, and in-plane displacements. The buckled shape of the member is

given in a file, ‘deform.dat’ which can be imported to spread sheet programs.

5.8.2 Residual Stress
Residual stresses generated from different cooling rates on different parts
of a cross-section reduce the buckling capacities of inelastic beams and columns.

In IBASP, a user can decide whether residual stresses need to be included or not.
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Compressive residual stresses occur at a more exposed area like flange tips

for rolled I-shaped sections. The junction of a flange and a web in I-shaped
sections cools later and has tensile residual stresses. The residual stress model
(Galambos and Ketter, 1959) shown in Figure 5.7 is widely used and employed
here. In Figure 5.7, T and C represent the area with tensile and compressive
residual stresses respectively. The magnitude of tensile residual stresses is given

by

Oy = O (5.55)
Bt, +1,(D-2t)

where o, is the maximum tensile residual stress and o,, is the maximum

compressive residual stress. The amount of the maximum compressive residual

stress is given by a user.
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Figure 5.7 Assumed Residual Stresses Distribution



CHAPTER 6:

IBASP Calibration

6.1 Introduction

The inelastic buckling analysis program, IBASP, was developed as
explained in Chapter 4 & 5. The program can predict elastic and inelastic buckling
capacities of the members. In this chapter, the program is tested using theoretical
solutions and experimental results. Two different plasticity theories are compared
with experimental and theoretical results. Both the eight-node and the nine-node
element are used.

Four different sets of inelastic buckling solutions and test results are
adopted to demonstrate the accuracy of the IBASP program. First, the buckling
loads of a cantilever column and the buckling moments of a simply supported beam
are calculated and compared with theoretical solutions. A bilinear stress-strain
relationship is assumed for the column and the beam. Second, continuous beam
tests by Bansal (1971) are used where the beams failed by lateral buckling. Third,
Elgaaly and Salkar’s (1990) in-plane edge loading tests are employed for a
comparison with the tested sections which failed by web crippling. Last, the
results from Ales and Yura’s (1993) braced beam buckling tests are compared with
the IBASP results.

The simple parametric study is performed to show that IBASP can be the
effective tool to find the brace stiffness requirements of inelastic as well as elastic

members.

103
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‘ 6.2 Inelastic Buckling Examples

In this section, elastic and inelastic buckling loads of cantilever columns
and buckling moments of simply supported beams are determined using IBASP.
The results from IBASP are compared with theoretical solutions. The cross-
section dimensions shown in Figure 6.1 and the idealized bilinear stress-strain
relationship shown in Figure 6.2 are used for both the columns and beams. The

material is assumed to become inelastic at 30 ksi as shown in Figure 6.2.
6.2.1. Cantilever Column

The elastic buckling load for the column is expressed as

p _TEI

cr kL2 (61)

where the £ is the effective length factor. For a cantilever column of Figure 6.3,

the & factor is equal to 2. According to the tangent modulus theory, the inelastic

—
i A d= 120
b= 120"
21 d ty = 05
lk _ tg = 05"

tfz\-'

Figure 6.1 Cross-section Properties
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Figure 6.2 Material Properties

buckling load is determined by multiplying the inelasticity ratio 7 by the elastic
buckling load. The inelasticity ratio zis defined as

Ly
6.2

Then, the inelastic buckling load of a given column is expressed as

2
P, =t ”kle O (63)
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Different-meshes-were-tried-to-check the convergence.. It was-observed

that, with mesh refinements, the IBASP results converged to theoretical solutions.
The results shown in Figure 6.4 were obtained using a 2x6 mesh. The results from
IBASP using two different plasticity theories and the elastic and tangent modulus
buckling loads are shown in Figure 6.4. In the elastic range, the IBASP results are
almost equal to the theoretical values from Equation 6.1. In the inelastic state,
buckling loads from IBASP are lower than those from the tangent modulus theory.
This may be due to the stress concentration right under the applied load. The
stress concentration causes localized large plastic deformation which reduces the
stiffness of the column. The IBASP results also indicate that the incremental

theory of plasticity yields higher buckling loads than the deformation theory.

6.2.2 Simply Supported Beam with Constant Moment

The simply supported beam under a constant moment as shown in Figure
6.5 is used to compare the results from the IBASP to the theoretical solutions by
Timoshenko and Gere (1961). The elastic and inelastic lateral-torsional buckling

moments which were discussed in Chapter 2 are briefly reviewed here. The elastic

buckling moment, A%

cr>

is expressed as

ME=Z |EI (GJ+EC ”—2) (6.4)
cr_l y w 12 .
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Figure 6.5 Simply Supported Beam Model under the

Constant Moment

Timoshenko and Gere (1961) suggested that the inelastic buckling moment
is obtained by multiplying the inelasticity ratio, 7, to the above equaﬁon. Then, the

inelastic buckling moment, Az]

cr >

is expressed as follows,
M. =t ML (6.5)

As discussed in Chapter 2, the above equation is too conservative because
the shear modulus is assumed to be reduced in the inelastic range. If the elastic
shear modulus is used as the inelastic shear modulus, the inelastic buckling moment

becomes

;] T 71'2
My, =" Er 1, (GT+E, C, ) (6.6)

The analysis results along with the theoretical solutions are plotted in
Figure 6.6. It shows the relationship between the lateral-torsional buckling
moments and the beam lengths. The buckled shape and cross-section deformation

are shown in Figure 6.7.
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theory yields lower buckling moments than the incremental theory in the inelastic
range. The difference between two plasticity theories is more evident as the level
of the inelasticity is increased. It also shows that the inelastic buckling moments
from Equation 6.6 closely match with those from the incremental theory.

In general, the eight-node element yielded lower buckling moments and
loads than the nine-node element. However, the difference between two elements

was small.

600 - Elastic
------ Inelastic (Eq. 6.5)
— — — Inelastic (Eq. 6.6)
500 A
Q —#&— Incremental Theory
é —+— Deformation Theory
{3 400
5
=
=
on 300 -
é
S Yield Moment
3 V
200 A
T e ——— \\A
100 : — : : : .
8 13 18 23 28 33 38 43

Beam Length (ft.)

Figure 6.6 Buckling Moments of Simply Supported Beam

Figure 6.6 shows that, as in the column buckling problems, the deformation
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6.3 Bansal’s Test

Bansal (1971) conducted a total of 37 buckling tests using three span
continuous steel beams to study elastic and inelastic instability behavior. Rolled I-
shaped beams and plate girders were used in tests. The results from the five tests
which failed by lateral buckling are used here to compare with those from the
program, IBASP. It was reported (Bansal, 1971) that all five beams except Test
#4 buckled in the inelastic range. The cross-section dimensions for each test are
given in Table 6.1. Table 6.2 shows the material properties of the beams.

Test setups for each test are illustrated in Figures 6.8. The differences
between tests were the beam slenderness ratio, number of loads, and the placement
of braces and stiffeners. A total of 32 elements (2x16) was used to model the
continuous beams. The eight-node and nine-node elements as well as two different
plasticity theories were used during the analytical studies. Residual stress was not
used.

The load vs. the vertical displacement at the midspan curves from
experiments and analysis using the incremental theory are plotted in Figure 6.9
through 6.13. The buckled shapes from IBASP are also shown in the figures. The
lateral buckling load in the figures represents the observed lateral buckling loads
from the experiments. The load-displacement curves from experiments show that
the buckled beam had some post buckling strength. However, IBASP predicts the
buckling load of the beams but not the post buckling strength.
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.£1

Table 6.1 Material Properties of Tested Beams from Bansal (1971)

Test No. Section Yield Stress, Strain Strain

ksi Hardening | Hardening

Strain Modulus
4 W12 x 14 65.35 22000 394

6 W12 x 16.5 48.35 - -
10 W12 x 22 57.25 12000 570
15 W16 x 26 63.75 18000 567
17 W12 x 14 43.75 15000 1045

Table 6.2 Cross-section Properties of Tested Beams from Bansal (1971)

Test No Section | Depth Flange Flange Web
Width Thickness | Thickness

4 W12 x 14 11.98 3.99 0.229 0.200

6 W12 x 16.5 12.10 4.04 0.273 0.230

10 W12 x 22 12.34 3.98 0.425 0.260

15 W16 x 26 15.69 5.63 0.337 0.257

17 W12 x 14 11.93 3.98 0.256 0.212
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Figure 6.9 Bansal’s Test # 4
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Table 6.3 Buckling Loads from Experiments and IBASP-(kips)

Test | Experimental | Incremental | Incremental | Deformation | Deformation
No. | Results Fight-Node | Nine-Node | Eight-Node | Nine-Node
Element Element Element Element
4 22.7 23.8 24.1 23.8 24.1
6 28.3 25.7 26.6 25.7 26.6
10 46.0 42.9 43.1 42.9 43.1
15 87.2 70.7 88.5 70.7 87.4
17 13.3 12.1 13.4 12.1 13.4

The lateral buckling loads from Bansal (1971) and the IBASP are
compared in Table 6.3. In the table, incremental and deformation mean the
incremental theory of plasticity and the deformation theory of plasticity,
respectively. Overall, the differences between analytical results from the nine-node
element and experimental results are less than 6 %.

In general, the nine-node element yielded higher buckling loads than the
eight-node elements did regardless of plasticity theories. The buckling loads from
the nine-node element were closer to the experimental buckling loads.

As discussed earlier, the deformation theory of plasticity was reported to
yield lower buckling loads than the incremental theory (El-Ghazaly af al, 1984 a &
b). It was also reported (Damkilde, 1985) that plate buckling loads by the
deformation theory were closer to experimental buckling loads. However, Table
6.3 does not show any significant difference between two plasticity theories except
Test # 15.
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The buckled shape of Test # 15 was unsymmetrical as shown in Figure

6.12.b. Tt was reported by Bansal (1971) that, in Test # 15, lateral-torsional
buckling was occurred first, then followed by web local buckling. The buckled
shape from TBASP might show the combination of those two buckling modes.

6.4 Elgaaly and Salkar’s Test

Elgaaly and Salkar (1990) performed a series of tests to study local web
yielding and crippling behavior of I-shaped beams under in-plane edge loads.
Tests were performed on short beams with a concentrated load at the midspan. In
this section, results from 2 tests are compared with those from IBASP to see
whether IBASP can predict local crippling buckling loads.

The stress-strain relationship of Figure 6.14 was used as material data. The
yield strength of the material was measured by Elgaaly and Salkar (1990). The
strain hardening strain and modulus were assumed for the analysis. It was also
assumed that the material continues to deform with no fracture.

Figure 6.15 shows the test setup and measured cross-section dimensions of
a W16x31 section. During experiments, the ratios of the length of applied load (&)
to the web depth (d), N/d, were varied from 0.2 to 0.6. The ratios, N/d, of 0.2 and
0.4 were used for the analytical study. The beam was braced against out-of-plane

displacements and rotations at supports and at the applied load points (V).



121

Er=E/50

W £ L O = 0
O O O O O O
1 i ] 1 L1

Stress (ksi)

20 4| E =29000

—
o O
[

0.02 0.04 0.06 0.08 0.1

o

Strain (in/in)

Figure 6.14 Stress-Strain Relationship for W16x31



122

LN
I i
Stiffener
d
Brace
\
| )
| b |
I~ -
(a) Test Setup
Ly
A I*\l/ 1
AR tr =0.430
1S 1, t,, = 0.264
d
bf =35.50
d =15.940
I by |
I~ |

(b) Cross-section Dimension

Figure 6.15 Test Setup and Cross-section Dimension of W16x31 (Elgaaly &
Salkar, 1991)



123

A total of 24 (3x8) nine-node elements were used to model the beam. For

N/d = 0.2, IBASP did not converge in the in-plane analysis routine. It might be
due to the localized large plastic deformation at the loading points. As discussed
in Chapter 5.7, the program was stopped when the load increment was small
enough. The load at the last iteration was taken as the buckling capacity of the
beam and the buckled shape was calculated. IBASP did converge when the ratio
N/d was 0.4. The load vs. the vertical displacement at a mid-span curves are
shown in Figure 6.16 and 6.17. The figures show that the large degree of plastic
deformation had occurred before buckling.

The buckled shapes are also shown in Figure 6.16 and 6.17. The cross-
section of the buckled beam at the quarter span and the mid-span is given in Figure
6.18. The buckled cross-section shape of Figure 6.18 (b) indicates that the
distortional buckling occurred rather than the lateral-torsional buckling. It also
demonstrates the capacity of the IBASP to predict the distortional buckling as well
as the lateral torsional buckling.

Table 6.4 shows buckling loads from experiments and IBASP. The
analytical buckling loads are larger than those from experiments. This may be due
to the fact that the stress-strain relationship after yielding is assumed for the

analytical study since a complete stress-strain relationship was not reported.

Table 6.4 Experimental and IBASP Results

N/d Experimental Results IBASP Results

0.2 112.0 120.0

0.4 145.0 155.7
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(a) At Quarter Span (b) At Mid Span

Figure 6.18 The Cross-section View of the Buckled
Beam for N/d = 0.4
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6.5-Ales-and Yura’s.Test

Ales and Yura (1993) performed inelastic beam buckling tests using a
S6x12.5 shown in Figure 6.19. The main purpose of the experiments was to
determine if Winter’s (Winter, 1958) brace requirements could be applied to
inelastic beams. As shown in Figure 6.20 (a), the simply supported beam was
under constant moment at the center of the beam (Figure 6.20 (b) ). The beams
were rigidly braced at the supports and loading points against the out-of-plane
displacements and rotations. At the midspan, the beam was braced only at the top
flange. Two different brace schemes were used for the center brace: a rigid brace
and the elastic brace with finite stiffness. The elastic brace is 1.2 times stiffer than
the one recommended by Winter (1958). The stress-strain relationship from
tension coupon tests was simplified as shown in Figure 6.21 and used as material
data for IBASP.

The buckling moments from both the rigidly and the elastically braced
beams were the same (355 kips-in.). It was reported by Ales and Yura that the
beams buckled in an S-shape at both tests.

—
. 7 d= 60
b= 333
w2|[< d oty = 0282
i A te = 0.359

tfm C

Figure 6.19 Cross-section Dimensions of S6x12.5
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The applied moment versus the vertical displacement at the midspan of the
beam is shown in Figure 6.22. Tt shows that the analytical results closely follow
the experimental values. The buckled shape from IBASP is also shown i Figure
6.23. The buckling moment from IBASP (342 kips-in) is slightly lower than that
from the experiments (355 kips-in).

Figure 6.22 also shows the difference between the beam without residual
stress and the beam with assumed residual stress. As expected, the residual

stresses reduce the buckling moments to 314 kips-in.
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300 - Experimental
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50 A —A— IBASP with Residual
Stress
0 ¢ T T T T 1
0 0.5 1 1.5 2 2.5 3 3.5

Vertical Displacement at the Center of the Beam (inch)

Figure 6.22 Moment vs. Displacement of Simply Supported Beam
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6.6 Parametric Study

The use of IBASP to determine the brace requirements of members is
demonstrated in this section.. The material properties and cross-section
dimensions from Ales and Yura (Figure 6.19 & 6.21) are used again as input data
for IBASP. A simply supported beam under a constant moment was used as the
example. Two types of braces, the lateral brace and the torsional brace, were
studied.

The 10 ft. long simply supported beam was assumed to be braced at both
ends for the out-of-plane displacement and rotation as shown in Figure 6.24. At
midspan, the beam was braced at the top flange only. A lateral brace and then a
torsional brace were used as the midspan brace. The stiffness of the braces was
changed to find the relationship between the buckling moments and the brace
stiffness. A total of 20 nine-node elements and the incremental theory of plasticity
were used.

When the stiffness of the mid span brace was equal to zero, the beam
buckled in the elastic range with the buckling moment of 271.6 kips-in. The
buckling moment of a one half beam (60”) or the fully braced beam was 319 kips-

Brace

60" \I 60"
I

Figure 6.24 Braced Beam under the Constant Moment
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in.-by- IBASP... This-buckling. moment. was.greater than the yield moment ofthe

beam. The buckling moment of the fully braced member was not twice as much as
that of the unbraced beam due to inelasticity. As the brace stiffness was increased,
the state of material changed from elastic to inelastic.

The results from IBASP are shown in Figure 6.25 and Figure 6.26. M, in

the figures represents the yield moment of the section. Figure 6.25 shows the
influence of the lateral brace stiffness on the buckling moment of the beam. The
relationship between the buckling moments of the braced beam and the torsional
braces stiffness is shown in Figure 6.26. Both beams behave similarly. When the

320 ~ /”—4—»——\*——0—0
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~~ 310 n y
g
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S P
o 290 -
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3
=
M 280 4
270 3 : : : .
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Figure 6.25 Buckling Moment vs. Lateral Brace Stiffness for a Simply
Supported Beam
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beam is under braced, the buckling capacity increases as a fimction of the brace
stiffness in the elastic and inelastic range. The buckling capacity vs. brace stiffness
relationship indicates that, as Winter (1958) stated, the brace stiffuess requirements
depend on the buckling loads but not on the state of the material.

For the given member, the full brace requirements as well as the buckling

loads or moments can be determined by the above procedure.
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6.7.Summ ary

In Chapter 6, a comparison was made between the results from IBASP and
experiments. Those examples were used to show the accuracy of the IBASP

program. The following observations are made;

1) the inelastic stress-strain relationship greatly influences the buckling loads of the
inelastic members

2) There is not much difference between the incremental theory of plasticity and
the deformation theory of plasticity.

3) The buckling loads from the eight-node element were smaller than those from
the nine-node element and experiments.

4) The nine-node element with the incremental theory of plasticity yielded the best
results. The maximum difference between the results from IBASP and
experiments was 6%

5) The IBASP program can predict the lateral-torsional as well as local buckling

capacities of the members.



Chapter 7:

Summary, Conclusion, and Future Research

7.1 Summary and Conclusion

This study on the bracing requirements for inelastic members was
composed of experimental and theoretical works.

In the experimental phase, composite columns were fabricated from three
steel bars with two different yield strengths. A total of nine braced columns with
the elastic brace at the mid height was tested. The elastic brace had four different
stiffnesses. The columns buckled in double curvature when the brace was stiff
When the stiffness of the brace was low, the columns buckled in a single curvature.
The results from buckling tests confirmed that Winter’s bracing requirements were
valid for inelastic members. Winter specified that the bracing requirements are
only a function of buckling loads and member length but not the state of material.

The inelastic columns were modeled and analyzed by ABAQUS. The
analytical results were compared with experimental ones. The results were also
compared with the bracing requirements for elastic members. The buckling loads
from ABAQUS were lower than those from experiments. The ABAQUS results
also showed that the brace stiffness and strength requirements for the elastic
members can be applied to inelastic members.

Winter’s method is directly applicable to a single column under a constant
axial load and a beam with a constant moment. However, most actual loading
conditions, especially for beams, have variable stresses along the length so that
Winter’s method is not directly applicable. While there are programs such as
BASP to handle complex elastic loading conditions, there are no programs for

135
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____inelastic.members. Tn Part II, an inelastic buckling analysis program, IBASP, using

the finite element method was developed to predict inelastic buckling loads of
braced and unbraced members. The program can consider lateral-torsional,
flexural, and local buckling.

In the program, the in-plane analysis to determine the stress distribution of
the member was performed first. Then, the tangent modulus theory which
specifies that the buckling capacities of inelastic members depend on the tangent
modulus of the material, was utilized to determine the stiffess of the member.
Last, a eigenproblem solution routine was employed to determine the buckling
load and the buckled shape. The elastoplastic behavior of the material was
considered if the stresses at buckling exceeded the yield strength of the material.
The modified Newton-Raphson method was employed to solve non-linear
problems due to inelasticity. Two plasticity theories, the incremental theory of
plasticity and the deformation theory of plasticity, were tried. The eight-node and
nine-node isoparametric plate elements were also tested.

The theoretical solutions and experimental results of determinant and non-
determinant members were used to test the accuracy of the program. The
comparison of two plasticity theories showed that the incremental theory yielded
the buckling loads which were closer to the theoretical solutions. When the results
from two theories were compared with experimental buckling loads, not much
difference between two theories was observed. The buckling loads from the nine-
node element were higher than those from the eight-node one. They were also
closer to experimental results.

The nine-node plate element with the incremental theory of plasticity

yielded the best results. The comparison with experimental results showed that the
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difference was less than 6%. Tt was also shown that the program can follow local

as well as lateral torsional buckling behavior.

7.2 Future Research

There have not been many inelastic buckling tests of braced structures. In
this study, small scale buckling tests were conducted to find the bracing
requirements of inelastic columns. Full scale inelastic buckling tests need to be
performed to verify those requirements in future studies.

The parametric studies using IBASP are suggested to better understand the
behavior of braced inelastic members and the bracing requirements. Design
guidelines can be developed through those studies.

By changing the input formats, buckling capacities of tapered members can
be determined using IBASP. IBASP which is currently limited to symmetric cross-
sections can be extended to include non-symmetrical cross-sections such as a Z-
shaped cross-section. The inelastic buckling analysis program should be improved
to take account of initial in-plane and out-of-plane imperfections and eccentric

loading.



Appendix A:

Consistent Constitutive Matrix and
Flastic Predictor-Radial Return Algoﬁthm for Plane Stress

Consistent Constitutive Matrix

The elastic predictor-radial return algorithm used in the plasticity routine to
determine the state of the material when the stresses were over the yield strength

of the material. As discussed in Chapter 5, the convergence of the algorithm

would improve if the consistent constitutive matrix was used. The matrix, [Decp] s

given by Tassoulas (1995) is shown here. The relationship between the stress and

strain increment is
d{Ac}=|D;,|a{4s) (A1)

where
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Elastic Predictor-Radial Return Routine for Plane Stress

For plane stress problems, the plane stress condition, o, =0, needs to be
satisfied while the strain increment in z-direction, A ¢, , is not zero. Dodds (1987)

and Tassoulas (1995) described the iterative procedure for plane stress problems.

If the stress in z-direction, o, , was not zero, the strain increment in z-direction,

Ae, , was iteratively adjusted using a Newton-Raphson method.

Do the following steps if a plastic deformation occurred,

1) assume Ag, for the initial iteration as follows

14
Agd = ————~

Zz_(l—v)

(46, + 4 ) (A.3)

the above equation is derived from plane stress condition
2) The new state of stresses is calculated using the elastic predictor-radial
return algorithm. The new stresses given in Equation 5.51 are shown

again
{o}+{dc}={S}+{4S}+{i}(c +40) (A.4)

If (az +Ac Z) < tol , then the plane stress condition is satisfied and the new
state of stress has been determined
It (O’Z +AO‘Z) > tol, the plane stress condition is not satisfied and a

Newton-Raphson method is employed to find the state of stress
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3) Derive the ith z-direction stress increment, Ao, , which is the function of

Ag, and the ith derivation of the z-direction stress increment with respect

to Ag, as follows

Ao-i(Ag;—l) = (-—1-—55 —Szj +Ao (A.5)
) 1+2GA4A
dAo,
dhe,| 4t (a.6)
where
do, _ 0 ( 1 sT—s, +Aa) (A.7.2)
dAe,  d4s,\1+2GAA
A 4
_ 1 2Gﬁ( ) - 1 28; , d4c
(1+ ZGA/I)z dAe, (1+ ZGA/I) dAe, JAe,
(A.7.b)
4) the new strain increment in z-direction is
Aot (4!
Ast = AsTt - Z( £ ) (A.8)
ddo,
dde,| et

5) Go back to Step 2

The above steps are repeated until the Ao, is less than the tolerance value



Appendix B:
Input Manual and A Example Input File for IBASP

Input Manual
18 input items are needed

1. 10, IGSTF, ISHEAR, IRES
IO : output options
If 10 .EQ. 2, short output option
If 10 .EQ. 1, medium output option
If 10 .EQ. 0, large output option
IGSTF : torsional geometric stiffness option
IfIGSTF .EQ. 0, no torsional geometric stiffness
IfIGSTF .EQ. 1, include torsional geometric stiffness
ISHEAR : shear distortion option
If ISHEAR .EQ. 0, no shear distortion
IfISHEAR .EQ. 1, include shear distortion
IRES : residual stress option
IfIRES .EQ. 0, include residual stress and enter the amount in item 15
IfIRES .EQ. 1, no residual stress
2. Annotation of Problem: first line
3. Annotation of Problem: second line
4, NUMELX, NUMELY, XLEN, YLEN, NLPTS, NMBPTS, NSPRM, NBBPTS,
NSPRB
NUMELX : number of elements in a horizontal direction (x-axis)

NUMELY: number of elements in a vertical direction (y-axis)
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XLEN : the length of the member in a horizontal direction (x-axis)
YLEN : the length of the member in a vertical direction (y-axis)
NLPTS : number of nodes with in-plane loads
NMBPTS : number of nodes with the in-plane boundary conditions
NSPRM : number of nodes with in-plane springs
NBBPTS : number of nodes with the out-of-plane boundary conditions
NSPRB : number of nodes with out-of-plane springs

5. YNG, PSN
YNG : elastic modulus
PSN : Poisson’s ratio

6. NMD : number of material data (must be greater than 1 and less than 10)

7. CONST(1,I), CONST(2,I) : material constants (I=1, NMD)
CONST (1,I) : plastic strain ( total strain - inelastic stress/elastic modulus)
CONST (2,1) : yield stress

8. THIW, THIB, WIDB, THIT, WIDT
THIW : thickness of web
THIB : thickness of bottom flange
WIDB : width of bottom flange
THIT : thickness of top flange
WIDT : width of bottom flange

9. NSTF : number of stiffeners

IfNSTF = 0, skip item 10 and go to item 11
10. for each stiffener:
KQB(1,I), KQB(2,I), TB(I), H(I); I=1,NSTF

KQB(1,I) and KQB(2,I) : node number for the stiffener
TB (I) : thickness of the stiffener
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H(T) : width of the stiffener
11. in-plane loading conditions
I1, I2, INCR, R(1), R(2)
I1 : node number 1
I2 : node number 2
INCR : the node increment from I1 to I2
R(1) : the applied load in a horizontal direction (x-axis)
R(2) : the applied load in a vertical direction (y-axis)
12. in-plane boundary conditions
I1, 12, INCR, IB(1), IB(2), BV(1), BV(2)
IfIB(1) = 1, horizontal displacement is limited
If IB(1) = 0, horizontal displacement is allowed
IfIB(2) = 1, vertical displacement is limited
If1B(2) = 0, vertical displacement is allowed
BV(1) : prescribed horizontal displacement (x-axis)
BV(2) : prescribed vertical displacement (y-axis)
13 in-plane springs
I1, 12, INCR, SPR(1), SPR(2)
SPR(1) : spring stiffness in a horizontal direction (x-axis)
SPR(2) : spring stiffness in a vertical direction (y-axis)
14 out-of-plane boundary conditions
I1, I1, INCR, IB(1), IB(2), IB(3)
IfIB(1) = 1, out-of-plane displacement is prohibited
IfIB(1) = 0, out-of-plane displacement is allowed
IfIB(2) = 1, rotation about z-axis is prohibited
IfIB(2) = 0, rotation about z-axis is allowed
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IfIB(3) = 1, torsion (rotation about x-axis) is prohibited
IfIB(3) = 0, torsion (rotation about x-axis) is allowed
15. out-of-plane springs
I1, I2, INCR, SPR(1), SPR(2), SPR(3)
SPR(1) : spring stiffness against out-of-plane displacement
SPR(2) : spring stiffiess against rotation about z-axis
SPR(3) : spring stiffness against torsion (rotation about x-axis)
16. this item is skipped if IRES = 1 in item 1,
GRES : the amount of maximum compressive residual stresses
17. NSTEP, MCYCLE, TOL
NSTEP : number of load steps allowed
MCYCLE : number of iterations allowed for in-plane analysis
TOL : tolerance for a buckling load
18. DLOADI, DLOAD
DLOADI : the initial load increment
DLOAD : the load increment
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Example Input File

An example input file is given below. The cross-section dimension and the
member are shown in Figure B.2 and B.3. The numbering sequence of nodes and
elements are also shown. The material behavior is shown in Figure B.1. In the
yield plateau, the tangent modulus of 10.0(ksi) is used rather than 0.0(ksi) for
faster convergence. The comparison of total strain and plastic strain is shown in

Table B.1.

Table B.1 Total and Plastic Strain

Stress | Total Strain | Plastic Strain

(ksi) (in./in.) (in./in.)
40.0 0.001379 0.0
42.0 0.001779 0.000331

42.178 0.019572 0.018118

45 Yield Plateau
40 1 Er=10.

35 4 = 5000

30 -
25
20
15 4 | E=29000
10 -

®

Stress (ksi)

0 1 1 1 1
0 0.005 0.01 0.015 0.02

Total Strain (in/in)

Figure B.1 Material Data
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represents the web element number

Zﬁ represents the flange and stiffener beam element number

Figure B.3 A Example Problem
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Example Input file
(Option: shorter outputs, no torsional geometric stiffness, no shear distortion, and

include residual stresses with 12.0 ksi as maximum compressive residual stress)

2,0,0,0 e . . .. . . . . . iteml
Length of the Member: 100 S 11<111 9
Depth of Member : 127 .o . . . . . . . . . item3
6,2,100.0,11.5,1,2,0,4,0 Ce e . . .. . . . . item4
29000.0, 0.3 .- . . . . . . . . . fitem5
3 O (<5114
0.0, 42.0 N <1110

0.000331, 42.0
0.018118, 42.178

0.5,0.5,12.0, 0.5, 12.0 O 11=11 1
4 . . . ... .. . . . item?9
31,32,1,0.25, 6.0 e e . ... . . . . . iteml10

32,33, 1, 0.25, 6.0
33,34, 1, 0.25, 6.0
34, 35, 1, 0.25, 6.0

35,35,1,0,-1.0 . item1l
3,3,1,1,1,0.0,0.0 L item12
63, 63,1,0, 1, 0.0, 0.0

1,5,4,1,0, 1 ... ... .. item14
61,65,4,1,0,1

12.0 . e . . . . . . . . . 1tem16
100, 500, 0.0000001 ... item17

20.0, 10.0 .. . . . . . . . . . item18
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